Spherical Discrepancy Minimization and Algorithmic Lower Bounds for Covering the Sphere

Inspired by the boolean discrepancy problem, we study the following optimization problem which we term \textsc{Spherical Discrepancy}: given $m$ unit vectors $v_1, \dots, v_m$, find another unit vector $x$ that minimizes $\max_i \langle x, v_i\rangle$. We show that \textsc{Spherical Discrepancy} is APX-hard and develop a multiplicative weights-based algorithm that achieves optimal worst-case error bounds up to lower order terms. We use our algorithm to give the first non-trivial lower bounds for the problem of covering a hypersphere by hyperspherical caps of uniform volume at least $2^{-o(\sqrt{n})}$. We accomplish this by proving a related covering bound in Gaussian space and showing that in this \textit{large cap regime} the bound transfers to spherical space. Up to a log factor, our lower bounds match known upper bounds in the large cap regime.

[1]  Aleksandar Nikolov,et al.  Tight hardness results for minimizing discrepancy , 2011, SODA '11.

[2]  Nikhil Bansal,et al.  An Algorithm for Komlós Conjecture Matching Banaszczyk's Bound , 2019, SIAM J. Comput..

[3]  Venkatesan Guruswami,et al.  Weak Decoupling, Polynomial Folds and Approximate Optimization over the Sphere , 2016, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).

[4]  C. Edwards,et al.  Rational Chebyshev approximations for the inverse of the error function , 1976 .

[5]  Bernard Chazelle,et al.  The discrepancy method - randomness and complexity , 2000 .

[6]  S. Li Concise Formulas for the Area and Volume of a Hyperspherical Cap , 2011 .

[7]  Shachar Lovett,et al.  Constructive Discrepancy Minimization by Walking on the Edges , 2012, FOCS.

[8]  C. A. Rogers The Packing of Equal Spheres , 1958 .

[9]  László Lovász Integer Sequences and Semidefinite Programming , 2000 .

[10]  Frank Vallentin,et al.  Local covering optimality of lattices: Leech lattice versus root lattice E8 , 2005 .

[11]  Luca Trevisan,et al.  Max cut and the smallest eigenvalue , 2008, STOC '09.

[12]  D. Freedman,et al.  A dozen de Finetti-style results in search of a theory , 1987 .

[13]  Avi Levy,et al.  Deterministic Discrepancy Minimization via the Multiplicative Weight Update Method , 2016, IPCO.

[14]  Oleg R. Musin,et al.  A survey on the kissing numbers , 2015 .

[15]  Sanjeev Arora,et al.  The Multiplicative Weights Update Method: a Meta-Algorithm and Applications , 2012, Theory Comput..

[16]  Thomas Rothvoß,et al.  Constructive Discrepancy Minimization for Convex Sets , 2014, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.

[17]  K. Böröczky Finite Packing and Covering , 2004 .

[18]  Matthew Jenssen,et al.  On kissing numbers and spherical codes in high dimensions , 2018, Advances in Mathematics.

[19]  Dragoljub Pokrajac,et al.  Spherical coverage verification , 2011, Appl. Math. Comput..

[20]  H. Coxeter,et al.  Covering space with equal spheres , 1959 .

[21]  Mohit Singh,et al.  Efficient algorithms for discrepancy minimization in convex sets , 2014, Random Struct. Algorithms.

[22]  K. Böröczky,et al.  Covering the Sphere by Equal Spherical Balls , 2003 .

[23]  Aleksandar Nikolov,et al.  The Komlos Conjecture Holds for Vector Colorings , 2013, ArXiv.

[24]  Nikhil Bansal,et al.  Algorithmic discrepancy beyond partial coloring , 2016, STOC.

[25]  Venkatesan Guruswami,et al.  Clustering with qualitative information , 2005, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[26]  Nikhil Bansal Semidefinite optimization in discrepancy theory , 2012, Math. Program..

[27]  J. Spencer Six standard deviations suffice , 1985 .

[28]  Jon Hamkins,et al.  Design and analysis of spherical codes , 1996 .

[29]  Frédéric Cazals,et al.  Computing the arrangement of circles on a sphere, with applications in structural biology , 2009, Comput. Geom..

[30]  Asymptotic Volume Formulae and Hyperbolic Ball Packing , 1997 .

[31]  M. C. Spruill,et al.  Asymptotic Distribution of Coordinates on High Dimensional Spheres , 2007 .

[32]  Shachar Lovett,et al.  Towards a Constructive Version of Banaszczyk's Vector Balancing Theorem , 2016, APPROX-RANDOM.

[33]  A. J. Stam LIMIT THEOREMS FOR UNIFORM DISTRIBUTIONS ON SPHERES IN HIGH-DIMENSIONAL EUCLIDEAN SPACES , 1982 .

[34]  K. Böröczky Packing of spheres in spaces of constant curvature , 1978 .

[35]  Shachar Lovett,et al.  The Gram-Schmidt walk: a cure for the Banaszczyk blues , 2017, STOC.

[36]  Yuval Rabani,et al.  Explicit Construction of a Small Epsilon-Net for Linear Threshold Functions , 2010, SIAM J. Comput..