Asymptotic scaling and universality for skew products with factors in SL(2, $\boldsymbol {\mathbb {R}}$ )

We consider skew-product maps over circle rotations x 7→ x+α (mod 1) with factors that take values in SL(2,R). This includes maps of almost Mathieu type. In numerical experiments, with α the inverse golden mean, Fibonacci iterates of maps from the almost Mathieu family exhibit asymptotic scaling behavior that is reminiscent of critical phase transitions. In a restricted setup that is characterized by a symmetry, we prove that critical behavior indeed occurs and is universal in an open neighborhood of the almost Mathieu family. This behavior is governed by a periodic orbit of a renormalization transformation. An extension of this transformation is shown to have a second periodic orbit as well, and we present some evidence that this orbit attracts supercritical almost Mathieu maps.

[1]  L. H. Eliasson,et al.  Floquet solutions for the 1-dimensional quasi-periodic Schrödinger equation , 1992 .

[2]  On trigonometric skew-products over irrational circle-rotations , 2020, 2004.03102.

[3]  M. Lyubich Feigenbaum-Coullet-Tresser universality and Milnor's hairiness conjecture. , 1999, math/9903201.

[4]  H. Koch On hyperbolicity in the renormalization of near-critical area-preserving maps , 2016 .

[5]  I. Satija A tale of two fractals: The Hofstadter butterfly and the integral Apollonian gaskets , 2016, 1606.09119.

[6]  A. Avila,et al.  The Ten Martini Problem , 2009 .

[7]  Valery Oseledets,et al.  Oseledets theorem , 2008, Scholarpedia.

[8]  Jean-Pierre Eckmann,et al.  A complete proof of the Feigenbaum conjectures , 1987 .

[9]  Renormalization in the Hénon Family, I: Universality But Non-Rigidity , 2005, math/0508477.

[10]  B. Simon,et al.  Duality and singular continuous spectrum in the almost Mathieu equation , 1997 .

[11]  H. Koch Golden mean renormalization for the almost Mathieu operator and related skew products , 2019, Journal of Mathematical Physics.

[12]  Golden mean renormalization for a generalized Harper equation: The strong coupling fixed point , 2000 .

[13]  T. Johnson,et al.  Dynamics of the universal area-preserving map associated with period doubling: hyperbolic sets , 2009, 0905.1390.

[14]  Alex Furman,et al.  On the multiplicative ergodic theorem for uniquely ergodic systems , 1997 .

[15]  Svetlana Ya. Jitomirskaya Metal-insulator transition for the almost Mathieu operator , 1999 .

[16]  B. Simon,et al.  Almost periodic Schrödinger operators II. The integrated density of states , 1983 .

[17]  Fine Properties of the Integrated Density of States and a Quantitative Separation Property of the Dirichlet Eigenvalues , 2005, math-ph/0501005.

[18]  Leo P. Kadanoff,et al.  Scaling for a Critical Kolmogorov-Arnold-Moser Trajectory , 1981 .

[19]  M. Wilkinson,et al.  Nests and chains of Hofstadter butterflies , 2019, Journal of Physics A: Mathematical and Theoretical.

[20]  B. Simon,et al.  Almost periodic Schrödinger operators , 1981 .

[21]  Y. Last Zero measure spectrum for the almost Mathieu operator , 1994 .

[22]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[23]  S. Swierczkowski On successive settings of an arc on the circumference of a circle , 1958 .

[24]  H. Koch,et al.  The Critical Renormalization Fixed Point for Commuting Pairs of Area-Preserving Maps , 2010 .

[25]  J. Palis,et al.  Geometric theory of dynamical systems : an introduction , 1984 .

[26]  J. Eckmann,et al.  A computer-assisted proof of universality for area-preserving maps , 1984 .

[27]  J. Avron,et al.  Hofstadter butterfly as quantum phase diagram , 2001, math-ph/0101019.

[28]  B. Simon,et al.  Cantor spectrum for the almost Mathieu equation , 1982 .

[29]  D. Thouless,et al.  Quantized Hall conductance in a two-dimensional periodic potential , 1992 .

[30]  Hofstadter rules and generalized dimensions of the spectrum of Harper's equation , 1996, cond-mat/9610177.

[31]  Michael Yampolsky,et al.  Hyperbolicity of renormalization of critical circle maps , 2003 .

[32]  W. Kyner Invariant Manifolds , 1961 .

[33]  R. Kashaev,et al.  Generalized Bethe ansatz equations for Hofstadter problem , 1993, hep-th/9312133.

[34]  J. Moser,et al.  The rotation number for almost periodic potentials , 1983 .

[35]  A. Avila The absolutely continuous spectrum of the almost Mathieu operator , 2008, 0810.2965.

[36]  A. Avila,et al.  Monotonic cocycles , 2013, 1310.0703.

[37]  A. Avila Global theory of one-frequency Schrödinger operators , 2015 .

[38]  D. Hofstadter Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields , 1976 .

[39]  P. G. Harper,et al.  Single Band Motion of Conduction Electrons in a Uniform Magnetic Field , 1955 .

[40]  C. McMullen Renormalization and 3-Manifolds Which Fiber over the Circle , 1996 .

[41]  Robert S. MacKay,et al.  Renormalisation in Area-Preserving Maps , 1993 .

[42]  M. Feigenbaum Quantitative universality for a class of nonlinear transformations , 1978 .

[43]  H. Koch,et al.  Renormalization and universality of the Hofstadter spectrum , 2019, Nonlinearity.

[44]  Pierre Coullet,et al.  ITÉRATIONS D'ENDOMORPHISMES ET GROUPE DE RENORMALISATION , 1978 .

[45]  A. Avila,et al.  Almost localization and almost reducibility , 2008, 0805.1761.