CO oxidation on PtSn nanoparticle catalysts occurs at the interface of Pt and Sn oxide domains formed under reaction conditions

[1]  G. Somorjai,et al.  Catalysis in Energy Generation and Conversion: How Insight Into Nanostructure, Composition, and Electronic Structure Leads to Better Catalysts (Perspective) , 2013, Topics in Catalysis.

[2]  M. Hävecker,et al.  Investigation of solid/vapor interfaces using ambient pressure X-ray photoelectron spectroscopy. , 2013, Chemical Society reviews.

[3]  K. Komvopoulos,et al.  Structure Sensitivity in Pt Nanoparticle Catalysts for Hydrogenation of 1,3-Butadiene: In Situ Study of Reaction Intermediates Using SFG Vibrational Spectroscopy , 2013 .

[4]  D. Loffreda,et al.  Promoter Effect of Early Stage Grown Surface Oxides: A Near-Ambient-Pressure XPS Study of CO Oxidation on PtSn Bimetallics. , 2012, The journal of physical chemistry letters.

[5]  J. Jumas,et al.  Single‐Phase Heterogeneous Pt3Sn Catalyst Synthesized by Room‐Temperature Self‐Assembly , 2012 .

[6]  D. Ferri,et al.  Who Is Doing the Job? Unraveling the Role of Ga2O3 in Methanol Steam Reforming on Pd2Ga/Ga2O3 , 2012 .

[7]  G. Somorjai,et al.  Size and Shape Control of Metal Nanoparticles for Reaction Selectivity in Catalysis , 2012 .

[8]  G. Somorjai,et al.  In Situ Surface and Reaction Probe Studies with Model Nanoparticle Catalysts , 2012 .

[9]  M. G. White,et al.  CO oxidation on nanostructured SnO(x)/Pt(111) surfaces: unique properties of reduced SnO(x). , 2012, Physical chemistry chemical physics : PCCP.

[10]  G. Somorjai,et al.  In situ study of oxidation states and structure of 4 nm CoPt bimetallic nanoparticles during CO oxidation using X-ray spectroscopies in comparison with reaction turnover frequency , 2012 .

[11]  G. Somorjai,et al.  Size effect of RhPt bimetallic nanoparticles in catalytic activity of CO oxidation: Role of surface segregation , 2012 .

[12]  G. Somorjai,et al.  In situ oxidation study of Pt(110) and its interaction with CO. , 2011, Journal of the American Chemical Society.

[13]  A. Yagishita,et al.  In situ time-resolved XAFS study on the structural transformation and phase separation of Pt3Sn and PtSn alloy nanoparticles on carbon in the oxidation process. , 2011, Physical chemistry chemical physics : PCCP.

[14]  M. Bäumer,et al.  Colloidal synthesis and structural control of PtSn bimetallic nanoparticles. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[15]  Hyuck-Mo Lee,et al.  Synthesis and characterization of low temperature Sn nanoparticles for the fabrication of highly conductive ink , 2011, Nanotechnology.

[16]  A. Yagishita,et al.  Core−Shell Phase Separation and Structural Transformation of Pt3Sn Alloy Nanoparticles Supported on γ-Al2O3 in the Reduction and Oxidation Processes Characterized by In Situ Time-Resolved XAFS , 2011 .

[17]  Kazuhiro Takanabe,et al.  Chemisorption of CO and mechanism of CO oxidation on supported platinum nanoclusters. , 2011, Journal of the American Chemical Society.

[18]  Zhi Liu,et al.  Rh(1-x)Pd(x) nanoparticle composition dependence in CO oxidation by oxygen: catalytic activity enhancement in bimetallic systems. , 2011, Physical chemistry chemical physics : PCCP.

[19]  B. Yuan,et al.  Formation and Thermal Stability of Platinum Oxides on Size-Selected Platinum Nanoparticles: Support Effects , 2010 .

[20]  H. Hirata,et al.  Cluster size dependence of Pt core-level shifts for mass-selected Pt clusters on TiO2(110) surfaces , 2010 .

[21]  D. Loffreda,et al.  Mediatory role of tin in the catalytic performance of tailored platinum-tin alloy surfaces for carbon monoxide oxidation , 2010 .

[22]  G. Somorjai,et al.  Evolution of structure and chemistry of bimetallic nanoparticle catalysts under reaction conditions. , 2010, Journal of the American Chemical Society.

[23]  J. V. van Bokhoven,et al.  Electronic structure of alumina-supported monometallic Pt and bimetallic PtSn catalysts under hydrogen and carbon monoxide environment. , 2010, Physical chemistry chemical physics : PCCP.

[24]  Z. Hussain,et al.  New ambient pressure photoemission endstation at Advanced Light Source beamline 9.3.2. , 2010, The Review of scientific instruments.

[25]  D. Goodman,et al.  Characterization of Pt/SiO2 Model Catalysts at UHV and Near Atmospheric Pressures , 2009 .

[26]  G. Somorjai,et al.  Thermally stable Pt/mesoporous silica core-shell nanocatalysts for high-temperature reactions. , 2009, Nature materials.

[27]  F. Gao,et al.  CO Oxidation on Pt-Group Metals from Ultrahigh Vacuum to Near Atmospheric Pressures. 2. Palladium and Platinum , 2009 .

[28]  F. Gao,et al.  CO Oxidation on Pt-Group Metals from Ultrahigh Vacuum to Near Atmospheric Pressures. 1. Rhodium , 2009 .

[29]  Younan Xia,et al.  Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? , 2009, Angewandte Chemie.

[30]  M. Salmeron Ambient pressure photoelectron spectroscopy: a new tool for surface science and nanotechnology , 2008 .

[31]  R. Johnston,et al.  Nanoalloys: from theory to applications of alloy clusters and nanoparticles. , 2008, Chemical reviews.

[32]  S. Kuwabata,et al.  Ligand-free platinum nanoparticles encapsulated in a hollow porous carbon shell as a highly active heterogeneous hydrogenation catalyst. , 2006, Angewandte Chemie.

[33]  G. Kästle,et al.  Alloy formation of supported gold nanoparticles at their transition from clusters to solids: does size matter? , 2005, Physical review letters.

[34]  D. Goodman,et al.  Catalytic oxidation of CO by platinum group metals: from ultrahigh vacuum to elevated pressures , 2002 .

[35]  B. Koel,et al.  Oxidation of ordered Pt–Sn surface alloys by O2 , 2001 .

[36]  H. Gasteiger,et al.  Bimetallic PtSn catalyst for selective CO oxidation in H2-rich gases at low temperatures , 2001 .

[37]  K. Lazar,et al.  Low-Temperature CO Oxidation over New Types of Sn–Pt/SiO2 Catalysts , 2000 .

[38]  Q. Jiang,et al.  Modelling for size-dependent and dimension-dependent melting of nanocrystals , 2000 .

[39]  Z Zhang,et al.  Modelling for size-dependent and dimension-dependent melting of nanocrystals , 2000 .

[40]  T. Campbell,et al.  Oxidation of polycrystalline tin by hyperthermal atomic oxygen: an investigation using electron energy-loss spectroscopy , 2000 .

[41]  N. Saliba,et al.  Oxidation of ordered Sn/Pt(111) surface alloys and thermal stability of the oxides formed , 1999 .

[42]  K. Grass,et al.  The Kinetics of Carbon Monoxide Oxidation on Tin(IV) Oxide Supported Platinum Catalysts , 1997 .

[43]  Morikawa,et al.  CO chemisorption at metal surfaces and overlayers. , 1996, Physical review letters.

[44]  P. Delichère,et al.  Characterization of Bimetallic Pt–Sn/Al2O3Catalysts: Relationship between Particle Size and Structure , 1996 .

[45]  M. Fanfoni,et al.  A synchrotron radiation photoemission study of the oxidation of tin , 1994 .

[46]  B. Koel,et al.  Probing the modifier precursor state : adsorption of CO on Sn/Pt(111) surface alloys , 1994 .

[47]  R. Herz,et al.  Two-Component Catalysts for Low-Temperature CO Oxidation: A Monte Carlo Study , 1993 .

[48]  P. Schulz,et al.  Oxidation of carbon monoxide on platinum-tin dioxide catalysts at low temperatures , 1992 .

[49]  Corallo,et al.  Electron-energy-loss study of the oxidation of polycrystalline tin. , 1992, Physical review. B, Condensed matter.

[50]  Lambin,et al.  Characterization of tin oxides by x-ray-photoemission spectroscopy. , 1992, Physical review. B, Condensed matter.

[51]  P. Ross Trends in the bonding of CO to the surfaces of Pt3M alloys (M=Ti, Co, and Sn) , 1992 .

[52]  P. Ross,et al.  Surface composition determination of Pt--Sn alloys by chemical titration with carbon monoxide , 1992 .

[53]  K. G. Brown,et al.  A proposed mechanism for Pt/SnOx-catalyzed CO oxidation , 1991 .

[54]  R. Iyer,et al.  Microcalorimetric study of the interaction of CO, O2, and CO + O2 with Pt/SnO2 and SO2 catalysts , 1990 .

[55]  Xu Chao,et al.  XPS examination of tin oxide on float glass surface , 1990 .

[56]  Fu,et al.  Photoemission from mass-selected monodispersed Pt clusters. , 1990, Physical review letters.

[57]  C. Peden,et al.  Kinetics of CO oxidation on single-crystal Pd, Pt, and Ir , 1988 .

[58]  H. Ibach,et al.  On the adsorption of CO on Pt(111) , 1982 .

[59]  J. A. Taylor,et al.  Empirical atomic sensitivity factors for quantitative analysis by electron spectroscopy for chemical analysis , 1981 .

[60]  T. Lin,et al.  Modulated molecular beam scattering of CO and NO from Pt(111) and the stepped Pt(557) crystal surfaces , 1981 .

[61]  W. A. Dench,et al.  Quantitative electron spectroscopy of surfaces: A standard data base for electron inelastic mean free paths in solids , 1979 .

[62]  W. Stöber,et al.  Controlled growth of monodisperse silica spheres in the micron size range , 1968 .