Investigating the origin of Co(IV)’s high electrocatalytic activity in the oxygen evolution reaction at a NaxCoO2 interface

[1]  L. Ai,et al.  Interlayer Expansion of Layered Cobalt Hydroxide Nanobelts to Highly Improve Oxygen Evolution Electrocatalysis. , 2017, ACS applied materials & interfaces.

[2]  Xiaomin Liu,et al.  Bioinspired Cobalt-Citrate Metal-Organic Framework as an Efficient Electrocatalyst for Water Oxidation. , 2017, ACS applied materials & interfaces.

[3]  K. Ayers,et al.  Structural basis for differing electrocatalytic water oxidation by the cubic, layered and spinel forms of lithium cobalt oxides , 2016 .

[4]  M. Chi,et al.  Role of LiCoO2 Surface Terminations in Oxygen Reduction and Evolution Kinetics. , 2015, The journal of physical chemistry letters.

[5]  Charles C. L. McCrory,et al.  Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. , 2015, Journal of the American Chemical Society.

[6]  Hong Yang,et al.  Ca₂Mn₂O₅ as oxygen-deficient perovskite electrocatalyst for oxygen evolution reaction. , 2014, Journal of the American Chemical Society.

[7]  A. Manthiram,et al.  Spinel-type lithium cobalt oxide as a bifunctional electrocatalyst for the oxygen evolution and oxygen reduction reactions , 2014, Nature Communications.

[8]  Yang Shao-Horn,et al.  Double perovskites as a family of highly active catalysts for oxygen evolution in alkaline solution , 2013, Nature Communications.

[9]  A. Govindaraj,et al.  Importance of trivalency and the eg1 configuration in the photocatalytic oxidation of water by Mn and Co oxides , 2013, Proceedings of the National Academy of Sciences.

[10]  Y. Shao-horn,et al.  Synthesis and Activities of Rutile IrO2 and RuO2 Nanoparticles for Oxygen Evolution in Acid and Alkaline Solutions. , 2012, The journal of physical chemistry letters.

[11]  J. Goodenough,et al.  A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles , 2011, Science.

[12]  John Kitchin,et al.  Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces , 2011 .

[13]  D Carlier,et al.  Electrochemical investigation of the P2–NaxCoO2 phase diagram. , 2011, Nature materials.

[14]  C. Delmas,et al.  Sodium ion mobility in Na(x)CoO2 (0.6 < x < 0.75) cobaltites studied by 23Na MAS NMR. , 2009, Inorganic chemistry.

[15]  S. Haile,et al.  Defect Chemistry of Yttrium-Doped Barium Zirconate: A Thermodynamic Analysis of Water Uptake , 2008 .

[16]  H. Sheu,et al.  Searching for stable Na-ordered phases in single-crystal samples ofγ−NaxCoO2 , 2007, 0708.0280.

[17]  J. Attfield,et al.  High-resolution neutron diffraction study of possible charge ordering in Na0.5CoO2 , 2006 .

[18]  T. Motohashi,et al.  Oxygen nonstoichiometry and actual Co valence inNaxCoO2−δ , 2005 .

[19]  J. Goodenough,et al.  Role of Doping and Dimensionality in the Superconductivity of NaxCoO2 , 2004, cond-mat/0409606.

[20]  M. Whittingham,et al.  Lithium batteries and cathode materials. , 2004, Chemical reviews.

[21]  R. Dilanian,et al.  Chemical composition and crystal structure of superconducting sodium cobalt oxide bilayer-hydrate , 2004 .

[22]  K. Lee,et al.  Charge disproportionation and spin ordering tendencies in Na x CoO 2 , 2004, cond-mat/0403018.

[23]  R. Cava,et al.  Low temperature phase transitions and crystal structure of Na0.5CoO2 , 2004, cond-mat/0402255.

[24]  R. Cava,et al.  Charge ordering, commensurability, and metallicity in the phase diagram of the layered NaxCoO2. , 2003, Physical Review Letters.

[25]  A. Maignan,et al.  Dome-shaped magnetic phase diagram of thermoelectric layered cobaltites. , 2003, Physical review letters.

[26]  R. Cava,et al.  Superconductivity phase diagram of NaxCoO2·1.3H2O , 2003, Nature.

[27]  Y. Shao-horn,et al.  Oxygen Vacancies and Intermediate Spin Trivalent Cobalt Ions in Lithium-Overstoichiometric LiCoO2 , 2003 .

[28]  Anton Van der Ven,et al.  Phase diagrams of lithium transition metal oxides: investigations from first principles , 1999 .

[29]  R. Balsys Refinement of the structure of Na0.74CoO2 using neutron powder diffraction , 1997 .

[30]  P. Wiseman,et al.  Cobalt(III) lithium oxide, CoLiO2: structure refinement by powder neutron diffraction , 1984 .

[31]  S. Gottesfeld,et al.  Electrochemical and optical studies of thick oxide layers on iridium and their electrocatalytic activities for the oxygen evolution reaction , 1978 .

[32]  E. Woermann,et al.  Phase equilibria in the system CaO-cobalt oxide in air , 1970 .

[33]  J. Bockris Kinetics of Activation Controlled Consecutive Electrochemical Reactions: Anodic Evolution of Oxygen , 1956 .