Modification of gelation kinetics in bioactive peptide amphiphiles.

[1]  Michael G. Fehlings,et al.  Self-Assembling Nanofibers Inhibit Glial Scar Formation and Promote Axon Elongation after Spinal Cord Injury , 2008, The Journal of Neuroscience.

[2]  B. Geiger,et al.  Supramolecular crafting of cell adhesion. , 2007, Biomaterials.

[3]  S. Stupp,et al.  PAPER www.rsc.org/softmatter | Soft Matter The internal structure of self-assembled peptide amphiphiles nanofibers{ , 2007 .

[4]  E. W. Meijer,et al.  Probing the Solvent-Assisted Nucleation Pathway in Chemical Self-Assembly , 2006, Science.

[5]  J. Hartgerink,et al.  Self-assembly of peptide-amphiphile nanofibers: the roles of hydrogen bonding and amphiphilic packing. , 2006, Journal of the American Chemical Society.

[6]  J. Stendahl,et al.  Intermolecular Forces in the Self‐Assembly of Peptide Amphiphile Nanofibers , 2006 .

[7]  J. Hartgerink,et al.  Modulation of peptide-amphiphile nanofibers via phospholipid inclusions. , 2006, Biomacromolecules.

[8]  S. Stupp,et al.  Encapsulation of pyrene within self-assembled peptide amphiphile nanofibers , 2005 .

[9]  Aleksandar M. Spasic,et al.  Finely Dispersed Particles : Micro-, Nano-, and Atto-Engineering , 2005 .

[10]  Samuel I Stupp,et al.  Self-assembling peptide amphiphile nanofiber matrices for cell entrapment. , 2005, Acta biomaterialia.

[11]  Hongzhou Jiang,et al.  Dip-pen patterning and surface assembly of peptide amphiphiles. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[12]  S. Stupp,et al.  Probing the interior of peptide amphiphile supramolecular aggregates. , 2005, Journal of the American Chemical Society.

[13]  S. Stupp,et al.  Presentation and recognition of biotin on nanofibers formed by branched peptide amphiphiles. , 2005, Nano letters.

[14]  S. Stupp,et al.  Coassembly of amphiphiles with opposite peptide polarities into nanofibers. , 2005, Journal of the American Chemical Society.

[15]  T. Meade,et al.  Self-assembled peptide amphiphile nanofibers conjugated to MRI contrast agents. , 2005, Nano letters.

[16]  R. Langer,et al.  Designing materials for biology and medicine , 2004, Nature.

[17]  D. Pochan,et al.  Salt-Triggered Peptide Folding and Consequent Self-Assembly into Hydrogels with Tunable Modulus , 2004 .

[18]  Krista L. Niece,et al.  Selective Differentiation of Neural Progenitor Cells by High-Epitope Density Nanofibers , 2004, Science.

[19]  T. Okubo,et al.  Seed polymerization of tetraethyl ortho-silicate in the presence of rod-like colloidal particles of anionic palygorskite and cationic β-FeO(OH) , 2004 .

[20]  Eric Dickinson,et al.  Aggregation and gelation , 2003 .

[21]  Ralf Masuch,et al.  Formation of Critical Oligomers Is a Key Event during Conformational Transition of Recombinant Syrian Hamster Prion Protein* , 2003, Journal of Biological Chemistry.

[22]  S. Stupp,et al.  Aqueous self-assembly of unsymmetric Peptide bolaamphiphiles into nanofibers with hydrophilic cores and surfaces. , 2003, Journal of the American Chemical Society.

[23]  Krista L. Niece,et al.  Self-assembly combining two bioactive peptide-amphiphile molecules into nanofibers by electrostatic attraction. , 2003, Journal of the American Chemical Society.

[24]  G. Damonte,et al.  Contribution of two conserved glycine residues to fibrillogenesis of the 106–126 prion protein fragment. Evidence that a soluble variant of the 106–126 peptide is neurotoxic , 2003, Journal of neurochemistry.

[25]  H. Kleinman,et al.  Ile‐Lys‐Val‐Ala‐Val (IKVAV)‐containing laminin α1 chain peptides form amyloid‐like fibrils , 2002, FEBS letters.

[26]  Richard A. L. Jones Soft Condensed Matter , 2002 .

[27]  Samuel I Stupp,et al.  Self-assembling biomaterials: Liquid crystal phases of cholesteryl oligo(l-lactic acid) and their interactions with cells , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[28]  S. Stupp,et al.  Self-Assembling Biomaterials: l-Lysine-Dendron-Substituted Cholesteryl-(l-lactic acid)n̄ , 2002 .

[29]  Samuel I Stupp,et al.  Peptide-amphiphile nanofibers: A versatile scaffold for the preparation of self-assembling materials , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[30]  S. Stupp,et al.  Self-Assembly and Mineralization of Peptide-Amphiphile Nanofibers , 2001, Science.

[31]  N. Sreerama,et al.  Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. , 2000, Analytical biochemistry.

[32]  Gregory F. Payne,et al.  Enzymatic gelation of the natural polymer chitosan , 2000 .

[33]  R. Wetzel,et al.  Amyloid, prions, and other protein aggregates , 1999 .

[34]  F. Ferrone,et al.  Analysis of protein aggregation kinetics. , 1999, Methods in enzymology.

[35]  W. Brown,et al.  Light Scattering: Principles and development , 1996 .

[36]  V. Hilser,et al.  The magnitude of the backbone conformational entropy change in protein folding , 1996, Proteins.

[37]  J. Lehn,et al.  Electron microscopic study of supramolecular liquid crystalline polymers formed by molecular-recognition-directed self-assembly from complementary chiral components. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[38]  P. Lansbury,et al.  Amyloid fibril formation requires a chemically discriminating nucleation event: studies of an amyloidogenic sequence from the bacterial protein OsmB. , 1992, Biochemistry.

[39]  A. Utani,et al.  The all-D-configuration segment containing the IKVAV sequence of laminin A chain has similar activities to the all-L-peptide in vitro and in vivo. , 1992, The Journal of biological chemistry.

[40]  H. Kleinman,et al.  A synthetic peptide containing the IKVAV sequence from the A chain of laminin mediates cell attachment, migration, and neurite outgrowth. , 1989, The Journal of biological chemistry.

[41]  H. Kleinman,et al.  Laminin A chain synthetic peptide which supports neurite outgrowth. , 1989, Biochemical and biophysical research communications.

[42]  J. Israelachvili Intermolecular and surface forces , 1985 .

[43]  Erkki Ruoslahti,et al.  Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule , 1984, Nature.

[44]  P. Gennes Scaling Concepts in Polymer Physics , 1979 .

[45]  S. Fleischer,et al.  Aggregation-induced red shift of the Cotton effect of mitochondrial structural protein. , 1967, Proceedings of the National Academy of Sciences of the United States of America.