Effective Dini's Theorem on Effectively Compact Metric Spaces

We show that if a computable sequence of real-valued functions on an effectively compact metric space converges pointwise monotonically to a computable function, then the sequence converges effectively uniformly to the function. This is an effectivized version of Dini's Theorem.

[1]  Hiroyasu Kamo,et al.  Computability of Self‐Similar Sets , 1999, Math. Log. Q..

[2]  Klaus Weihrauch,et al.  Computable Analysis: An Introduction , 2014, Texts in Theoretical Computer Science. An EATCS Series.

[3]  Marian Boykan Pour-El,et al.  Computability in analysis and physics , 1989, Perspectives in Mathematical Logic.

[4]  Cristian S. Calude,et al.  Combinatorics, Complexity and Logic , 1999 .

[5]  Vasco Brattka,et al.  Computability on subsets of metric spaces , 2003, Theor. Comput. Sci..

[6]  Klaus Weihrauch,et al.  Computability on Subsets of Euclidean Space I: Closed and Compact Subsets , 1999, Theor. Comput. Sci..

[7]  Klaus Weihrauch,et al.  Computability on Computable Metric Spaces , 1993, Theor. Comput. Sci..

[8]  Mariko Yasugi,et al.  Effective Properties of Sets and Functions in Metric Spaces with Computability Structure , 1999, Theor. Comput. Sci..

[9]  Mariko Yasugi,et al.  Computability Structures on Metric Spaces , 1996, DMTCS.