A New Repair Strategy for the Hadamard Minimum Storage Regenerating Codes for Distributed Storage Systems

The newly presented (k + m, k) Hadamard minimum storage regenerating (MSR) codes are a class of high rate storage codes with optimal repair property for single node failure. In this paper, we propose a new simple optimal repair strategy for (k + m, k) Hadamard MSR codes, which can considerably reduce the computation compared with the original one during the node repair.

[1]  Jennifer Wallis,et al.  On Hadamard matrices , 1975 .

[2]  Ben Y. Zhao,et al.  OceanStore: an architecture for global-scale persistent storage , 2000, SIGP.

[3]  Dimitris S. Papailiopoulos,et al.  Repair Optimal Erasure Codes Through Hadamard Designs , 2011, IEEE Transactions on Information Theory.

[4]  C. Colbourn,et al.  Handbook of Combinatorial Designs , 2006 .

[5]  Cheng Huang,et al.  Erasure Coding in Windows Azure Storage , 2012, USENIX Annual Technical Conference.

[6]  Wencin Poh,et al.  Characterizations and construction methods for linear functional-repair storage codes , 2013, 2013 IEEE International Symposium on Information Theory.

[7]  Jie Li,et al.  A Framework of Constructions of Minimal Storage Regenerating Codes With the Optimal Access/Update Property , 2013, IEEE Transactions on Information Theory.

[8]  Alexandros G. Dimakis,et al.  Network Coding for Distributed Storage Systems , 2007, IEEE INFOCOM 2007 - 26th IEEE International Conference on Computer Communications.

[9]  Henk D. L. Hollmann Storage codes — Coding rate and repair locality , 2013, 2013 International Conference on Computing, Networking and Communications (ICNC).

[10]  Rudolf Lide,et al.  Finite fields , 1983 .

[11]  Jehoshua Bruck,et al.  Zigzag Codes: MDS Array Codes With Optimal Rebuilding , 2011, IEEE Transactions on Information Theory.

[12]  Peter J. Cameron,et al.  A brief introduction to design theory , 1975 .

[13]  Daniela Fischer,et al.  Contemporary Design Theory A Collection Of Surveys , 2016 .

[14]  Jehoshua Bruck,et al.  On codes for optimal rebuilding access , 2011, 2011 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[15]  K. Conrad,et al.  Finite Fields , 2018, Series and Products in the Development of Mathematics.

[16]  Jehoshua Bruck,et al.  Long MDS codes for optimal repair bandwidth , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[17]  Alan R. Jones,et al.  Fast Fourier Transform , 1970, SIGP.