Quadratic spline collocation method and efficient preconditioner for the Helmholtz equation with the Sommerfeld boundary conditions
暂无分享,去创建一个
L. Li | Hou-biao Li | W. Luo | Xianming Gu | Ting-Zhu Huang
[1] Semyon Tsynkov,et al. A High-Order Numerical Method for the Helmholtz Equation with Nonstandard Boundary Conditions , 2013, SIAM J. Sci. Comput..
[2] Feng-Gong Lang,et al. Quintic B-spline collocation method for second order mixed boundary value problem , 2012, Comput. Phys. Commun..
[3] Waheed K. Zahra,et al. Quadratic spline solution for boundary value problem of fractional order , 2012, Numerical Algorithms.
[4] T. Linß,et al. Approximation of singularly perturbed reaction-diffusion problems by quadratic C1-splines , 2012, Numerical Algorithms.
[5] Jens Markus Melenk,et al. Wavenumber Explicit Convergence Analysis for Galerkin Discretizations of the Helmholtz Equation , 2011, SIAM J. Numer. Anal..
[6] Huan-Wen Liu,et al. Polynomial spline approach for solving second-order boundary-value problems with Neumann conditions , 2011, Appl. Math. Comput..
[7] Graeme Fairweather,et al. Compact optimal quadratic spline collocation methods for the Helmholtz equation , 2011, J. Comput. Phys..
[8] Wim Vanroose,et al. On the indefinite Helmholtz equation: Complex stretched absorbing boundary layers, iterative analysis, and preconditioning , 2009, J. Comput. Phys..
[9] Ting-Zhu Huang,et al. On some new approximate factorization methods for block tridiagonal matrices suitable for vector and parallel processors , 2009, Math. Comput. Simul..
[10] Vikas Gupta,et al. A uniformly convergent B-spline collocation method on a nonuniform mesh for singularly perturbed one-dimensional time-dependent linear convection-diffusion problem , 2008 .
[11] Graeme Fairweather,et al. Optimal superconvergent one step quadratic spline collocation methods , 2008 .
[12] Olaf Steinbach,et al. Numerical Approximation Methods for Elliptic Boundary Value Problems: Finite and Boundary Elements , 2007 .
[13] F. Magoulès,et al. An optimized Schwarz method with two‐sided Robin transmission conditions for the Helmholtz equation , 2007 .
[14] Cornelis Vuik,et al. Spectral Analysis of the Discrete Helmholtz Operator Preconditioned with a Shifted Laplacian , 2007, SIAM J. Sci. Comput..
[15] Seongjai Kim,et al. Compact schemes for acoustics in the frequency domain , 2003 .
[16] Cornelis Vuik,et al. On a Class of Preconditioners for Solving the Helmholtz Equation , 2003 .
[17] Christina C. Christara,et al. Fast Fourier Transform Solvers and Preconditioners for Quadratic Spline Collocation , 2002 .
[18] Michael B. Giles,et al. Preconditioned iterative solution of the 2D Helmholtz equation , 2002 .
[19] G. Fairweather,et al. Orthogonal spline collocation methods for partial di erential equations , 2001 .
[20] Barry Smith,et al. Multigrid and multilevel methods for quadratic spline collocation , 1997 .
[21] Gerard L. G. Sleijpen,et al. Maintaining convergence properties of BiCGstab methods in finite precision arithmetic , 1995, Numerical Algorithms.
[22] Gerard L. G. Sleijpen,et al. BiCGstab(l) and other hybrid Bi-CG methods , 1994, Numerical Algorithms.
[23] C. Christara. Quadratic spline collocation methods for elliptic partial differential equations , 1994 .
[24] D. R. Fokkema,et al. BICGSTAB( L ) FOR LINEAR EQUATIONS INVOLVING UNSYMMETRIC MATRICES WITH COMPLEX , 1993 .
[25] Henk A. van der Vorst,et al. Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..
[26] A. Bayliss,et al. On accuracy conditions for the numerical computation of waves , 1985 .
[27] A. Bayliss,et al. An Iterative method for the Helmholtz equation , 1983 .
[28] C. D. Boor,et al. Collocation at Gaussian Points , 1973 .
[29] Leszek Demkowicz,et al. Convergence of the infinite element methods for the Helmholtz equation in separable domains , 1998 .
[30] A. K. Khalifa,et al. Collocation with Quadratic and Cubic Splines , 1982 .