Quadratic spline collocation method and efficient preconditioner for the Helmholtz equation with the Sommerfeld boundary conditions

[1]  Semyon Tsynkov,et al.  A High-Order Numerical Method for the Helmholtz Equation with Nonstandard Boundary Conditions , 2013, SIAM J. Sci. Comput..

[2]  Feng-Gong Lang,et al.  Quintic B-spline collocation method for second order mixed boundary value problem , 2012, Comput. Phys. Commun..

[3]  Waheed K. Zahra,et al.  Quadratic spline solution for boundary value problem of fractional order , 2012, Numerical Algorithms.

[4]  T. Linß,et al.  Approximation of singularly perturbed reaction-diffusion problems by quadratic C1-splines , 2012, Numerical Algorithms.

[5]  Jens Markus Melenk,et al.  Wavenumber Explicit Convergence Analysis for Galerkin Discretizations of the Helmholtz Equation , 2011, SIAM J. Numer. Anal..

[6]  Huan-Wen Liu,et al.  Polynomial spline approach for solving second-order boundary-value problems with Neumann conditions , 2011, Appl. Math. Comput..

[7]  Graeme Fairweather,et al.  Compact optimal quadratic spline collocation methods for the Helmholtz equation , 2011, J. Comput. Phys..

[8]  Wim Vanroose,et al.  On the indefinite Helmholtz equation: Complex stretched absorbing boundary layers, iterative analysis, and preconditioning , 2009, J. Comput. Phys..

[9]  Ting-Zhu Huang,et al.  On some new approximate factorization methods for block tridiagonal matrices suitable for vector and parallel processors , 2009, Math. Comput. Simul..

[10]  Vikas Gupta,et al.  A uniformly convergent B-spline collocation method on a nonuniform mesh for singularly perturbed one-dimensional time-dependent linear convection-diffusion problem , 2008 .

[11]  Graeme Fairweather,et al.  Optimal superconvergent one step quadratic spline collocation methods , 2008 .

[12]  Olaf Steinbach,et al.  Numerical Approximation Methods for Elliptic Boundary Value Problems: Finite and Boundary Elements , 2007 .

[13]  F. Magoulès,et al.  An optimized Schwarz method with two‐sided Robin transmission conditions for the Helmholtz equation , 2007 .

[14]  Cornelis Vuik,et al.  Spectral Analysis of the Discrete Helmholtz Operator Preconditioned with a Shifted Laplacian , 2007, SIAM J. Sci. Comput..

[15]  Seongjai Kim,et al.  Compact schemes for acoustics in the frequency domain , 2003 .

[16]  Cornelis Vuik,et al.  On a Class of Preconditioners for Solving the Helmholtz Equation , 2003 .

[17]  Christina C. Christara,et al.  Fast Fourier Transform Solvers and Preconditioners for Quadratic Spline Collocation , 2002 .

[18]  Michael B. Giles,et al.  Preconditioned iterative solution of the 2D Helmholtz equation , 2002 .

[19]  G. Fairweather,et al.  Orthogonal spline collocation methods for partial di erential equations , 2001 .

[20]  Barry Smith,et al.  Multigrid and multilevel methods for quadratic spline collocation , 1997 .

[21]  Gerard L. G. Sleijpen,et al.  Maintaining convergence properties of BiCGstab methods in finite precision arithmetic , 1995, Numerical Algorithms.

[22]  Gerard L. G. Sleijpen,et al.  BiCGstab(l) and other hybrid Bi-CG methods , 1994, Numerical Algorithms.

[23]  C. Christara Quadratic spline collocation methods for elliptic partial differential equations , 1994 .

[24]  D. R. Fokkema,et al.  BICGSTAB( L ) FOR LINEAR EQUATIONS INVOLVING UNSYMMETRIC MATRICES WITH COMPLEX , 1993 .

[25]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[26]  A. Bayliss,et al.  On accuracy conditions for the numerical computation of waves , 1985 .

[27]  A. Bayliss,et al.  An Iterative method for the Helmholtz equation , 1983 .

[28]  C. D. Boor,et al.  Collocation at Gaussian Points , 1973 .

[29]  Leszek Demkowicz,et al.  Convergence of the infinite element methods for the Helmholtz equation in separable domains , 1998 .

[30]  A. K. Khalifa,et al.  Collocation with Quadratic and Cubic Splines , 1982 .