Hierarchical multivariate regression-based sensitivity analysis reveals complex parameter interaction patterns in dynamic models
暂无分享,去创建一个
Ulf G. Indahl | Stig W. Omholt | Jon Olav Vik | Kristin Tøndel | Harald Martens | Nicolas P. Smith | J. Vik | H. Martens | S. Omholt | U. Indahl | Kristin Tøndel | N. Smith
[1] J. Vik,et al. Order‐preserving principles underlying genotype–phenotype maps ensure high additive proportions of genetic variance , 2011, Journal of evolutionary biology.
[2] Peter J. Hunter,et al. Hierarchical Cluster-based Partial Least Squares Regression (HC-PLSR) is an efficient tool for metamodelling of nonlinear dynamic models , 2011, BMC Systems Biology.
[3] S. Omholt,et al. Phenomics: the next challenge , 2010, Nature Reviews Genetics.
[4] N P Smith,et al. A mathematical model of the murine ventricular myocyte: a data-driven biophysically based approach applied to mice overexpressing the canine NCX isoform. , 2010, American journal of physiology. Heart and circulatory physiology.
[5] Inge S. Helland,et al. Steps Towards a Unified Basis for Scientific Models and Methods , 2009 .
[6] E. Sobie. Parameter sensitivity analysis in electrophysiological models using multivariable regression. , 2009, Biophysical journal.
[7] Eric A. Sobie,et al. Regression Analysis for Constraining Free Parameters in Electrophysiological Models of Cardiac Cells , 2009, PLoS Comput. Biol..
[8] D. Kirschner,et al. A methodology for performing global uncertainty and sensitivity analysis in systems biology. , 2008, Journal of theoretical biology.
[9] Uri Alon,et al. The incoherent feed-forward loop can generate non-monotonic input functions for genes , 2008, Molecular systems biology.
[10] Eric A Sobie,et al. Mathematical model of the neonatal mouse ventricular action potential. , 2008, American journal of physiology. Heart and circulatory physiology.
[11] Saltelli Andrea,et al. Global Sensitivity Analysis: The Primer , 2008 .
[12] Isam Shahrour,et al. Use of artificial neural network simulation metamodelling to assess groundwater contamination in a road project , 2007, Math. Comput. Model..
[13] Brian J. Williams,et al. Sensitivity analysis when model outputs are functions , 2006, Reliab. Eng. Syst. Saf..
[14] I. Helland. Partial Least Squares Regression , 2006 .
[15] D. Lauffenburger,et al. A Systems Model of Signaling Identifies a Molecular Basis Set for Cytokine-Induced Apoptosis , 2005, Science.
[16] Carol S. Woodward,et al. Enabling New Flexibility in the SUNDIALS Suite of Nonlinear and Differential/Algebraic Equation Solvers , 2020, ACM Trans. Math. Softw..
[17] G. Bett,et al. Computer model of action potential of mouse ventricular myocytes. , 2004, American journal of physiology. Heart and circulatory physiology.
[18] Stanley Nattel,et al. Single‐channel recordings of a rapid delayed rectifier current in adult mouse ventricular myocytes: basic properties and effects of divalent cations , 2004, The Journal of physiology.
[19] Charles K. Bayne,et al. Multivariate Analysis of Quality: An Introduction , 2002, Technometrics.
[20] Tormod Næs,et al. Identifying and interpreting market segments using conjoint analysis , 2001 .
[21] Hichem Frigui,et al. A Robust Competitive Clustering Algorithm With Applications in Computer Vision , 1999, IEEE Trans. Pattern Anal. Mach. Intell..
[22] Pierre Dardenne,et al. Validation and verification of regression in small data sets , 1998 .
[23] K. L. Wang,et al. Positive and Negative Autoregulation ofREB1 Transcription in Saccharomyces cerevisiae , 1998, Molecular and Cellular Biology.
[24] 学 加納,et al. Partial Least Squares Regression を用いた蒸留塔製品組成の推定制御 , 1998 .
[25] B. Gaszner,et al. The modulation of pacing-induced changes in intracellular sodium levels by extracellular Ca2+ in isolated perfused rat hearts. , 1997, Journal of Molecular and Cellular Cardiology.
[26] A. Hindmarsh,et al. CVODE, a stiff/nonstiff ODE solver in C , 1996 .
[27] I. Helland,et al. Comparison of Prediction Methods when Only a Few Components are Relevant , 1994 .
[28] M. Friendly. Mosaic Displays for Multi-Way Contingency Tables , 1994 .
[29] Tomas Isaksson,et al. Splitting of calibration data by cluster analysis , 1991 .
[30] Isak Gath,et al. Unsupervised Optimal Fuzzy Clustering , 1989, IEEE Trans. Pattern Anal. Mach. Intell..
[31] A. Höskuldsson. PLS regression methods , 1988 .
[32] M. Braga,et al. Exploratory Data Analysis , 2018, Encyclopedia of Social Network Analysis and Mining. 2nd Ed..
[33] I. Jolliffe. A Note on the Use of Principal Components in Regression , 1982 .
[34] James C. Bezdek,et al. Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.
[35] Siren R. Veflingstad,et al. The genotype-phenotype relationship in multicellular pattern-generating models - the neglected role of pattern descriptors , 2009, BMC Systems Biology.
[36] Tormod Næs,et al. New modifications and applications of fuzzy C-means methodology , 2008, Comput. Stat. Data Anal..
[37] M. Forina,et al. Multivariate calibration. , 2007, Journal of chromatography. A.
[38] Richard Kramer,et al. Chemometric Techniques For Quantitative Analysis , 1998 .
[39] I. Helland. Partial least squares regression and statistical models , 1990 .
[40] S. Wold,et al. The multivariate calibration problem in chemistry solved by the PLS method , 1983 .
[41] Robert E. Shannon,et al. Design and analysis of simulation experiments , 1978, WSC '78.