Hierarchical multivariate regression-based sensitivity analysis reveals complex parameter interaction patterns in dynamic models

[1]  J. Vik,et al.  Order‐preserving principles underlying genotype–phenotype maps ensure high additive proportions of genetic variance , 2011, Journal of evolutionary biology.

[2]  Peter J. Hunter,et al.  Hierarchical Cluster-based Partial Least Squares Regression (HC-PLSR) is an efficient tool for metamodelling of nonlinear dynamic models , 2011, BMC Systems Biology.

[3]  S. Omholt,et al.  Phenomics: the next challenge , 2010, Nature Reviews Genetics.

[4]  N P Smith,et al.  A mathematical model of the murine ventricular myocyte: a data-driven biophysically based approach applied to mice overexpressing the canine NCX isoform. , 2010, American journal of physiology. Heart and circulatory physiology.

[5]  Inge S. Helland,et al.  Steps Towards a Unified Basis for Scientific Models and Methods , 2009 .

[6]  E. Sobie Parameter sensitivity analysis in electrophysiological models using multivariable regression. , 2009, Biophysical journal.

[7]  Eric A. Sobie,et al.  Regression Analysis for Constraining Free Parameters in Electrophysiological Models of Cardiac Cells , 2009, PLoS Comput. Biol..

[8]  D. Kirschner,et al.  A methodology for performing global uncertainty and sensitivity analysis in systems biology. , 2008, Journal of theoretical biology.

[9]  Uri Alon,et al.  The incoherent feed-forward loop can generate non-monotonic input functions for genes , 2008, Molecular systems biology.

[10]  Eric A Sobie,et al.  Mathematical model of the neonatal mouse ventricular action potential. , 2008, American journal of physiology. Heart and circulatory physiology.

[11]  Saltelli Andrea,et al.  Global Sensitivity Analysis: The Primer , 2008 .

[12]  Isam Shahrour,et al.  Use of artificial neural network simulation metamodelling to assess groundwater contamination in a road project , 2007, Math. Comput. Model..

[13]  Brian J. Williams,et al.  Sensitivity analysis when model outputs are functions , 2006, Reliab. Eng. Syst. Saf..

[14]  I. Helland Partial Least Squares Regression , 2006 .

[15]  D. Lauffenburger,et al.  A Systems Model of Signaling Identifies a Molecular Basis Set for Cytokine-Induced Apoptosis , 2005, Science.

[16]  Carol S. Woodward,et al.  Enabling New Flexibility in the SUNDIALS Suite of Nonlinear and Differential/Algebraic Equation Solvers , 2020, ACM Trans. Math. Softw..

[17]  G. Bett,et al.  Computer model of action potential of mouse ventricular myocytes. , 2004, American journal of physiology. Heart and circulatory physiology.

[18]  Stanley Nattel,et al.  Single‐channel recordings of a rapid delayed rectifier current in adult mouse ventricular myocytes: basic properties and effects of divalent cations , 2004, The Journal of physiology.

[19]  Charles K. Bayne,et al.  Multivariate Analysis of Quality: An Introduction , 2002, Technometrics.

[20]  Tormod Næs,et al.  Identifying and interpreting market segments using conjoint analysis , 2001 .

[21]  Hichem Frigui,et al.  A Robust Competitive Clustering Algorithm With Applications in Computer Vision , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Pierre Dardenne,et al.  Validation and verification of regression in small data sets , 1998 .

[23]  K. L. Wang,et al.  Positive and Negative Autoregulation ofREB1 Transcription in Saccharomyces cerevisiae , 1998, Molecular and Cellular Biology.

[24]  学 加納,et al.  Partial Least Squares Regression を用いた蒸留塔製品組成の推定制御 , 1998 .

[25]  B. Gaszner,et al.  The modulation of pacing-induced changes in intracellular sodium levels by extracellular Ca2+ in isolated perfused rat hearts. , 1997, Journal of Molecular and Cellular Cardiology.

[26]  A. Hindmarsh,et al.  CVODE, a stiff/nonstiff ODE solver in C , 1996 .

[27]  I. Helland,et al.  Comparison of Prediction Methods when Only a Few Components are Relevant , 1994 .

[28]  M. Friendly Mosaic Displays for Multi-Way Contingency Tables , 1994 .

[29]  Tomas Isaksson,et al.  Splitting of calibration data by cluster analysis , 1991 .

[30]  Isak Gath,et al.  Unsupervised Optimal Fuzzy Clustering , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  A. Höskuldsson PLS regression methods , 1988 .

[32]  M. Braga,et al.  Exploratory Data Analysis , 2018, Encyclopedia of Social Network Analysis and Mining. 2nd Ed..

[33]  I. Jolliffe A Note on the Use of Principal Components in Regression , 1982 .

[34]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[35]  Siren R. Veflingstad,et al.  The genotype-phenotype relationship in multicellular pattern-generating models - the neglected role of pattern descriptors , 2009, BMC Systems Biology.

[36]  Tormod Næs,et al.  New modifications and applications of fuzzy C-means methodology , 2008, Comput. Stat. Data Anal..

[37]  M. Forina,et al.  Multivariate calibration. , 2007, Journal of chromatography. A.

[38]  Richard Kramer,et al.  Chemometric Techniques For Quantitative Analysis , 1998 .

[39]  I. Helland Partial least squares regression and statistical models , 1990 .

[40]  S. Wold,et al.  The multivariate calibration problem in chemistry solved by the PLS method , 1983 .

[41]  Robert E. Shannon,et al.  Design and analysis of simulation experiments , 1978, WSC '78.