Virtual shaker modeling and simulation, parameters estimation of a high damped electrodynamic shaker

Abstract Virtual shaker testing is a novel and valuable tool to predict a vibration test response as the coupling effect. This consists of simulating a physical shaker test by modeling the constitutive elements of a vibration test loop. This article presents the implementation and validation of a virtual shaker testing for a high-damped shaker. The shaker is modeled by mechanical lumped elements as a state-space system. In the case of a high damped electrodynamic shaker, the classical experimental modal estimation does not allow a proper identification of the system. This article presents a blocking structure approach as an alternative for shaker parameters determination. The obtained results are implemented in the virtual shaker testing model, simulations are performed and the model is validated by experiments.

[2]  Washington J. DeLima,et al.  A Numerical Approach to System Model Identification of Random Vibration Test , 2017 .

[3]  D. L. Gregory,et al.  The Vibration Virtual Environment for Test Optimization (VETO) , 1996 .

[4]  Guglielmo S. Aglietti,et al.  An enhanced methodology for spacecraft correlation activity using virtual testing tools , 2017 .

[5]  M. Tsai,et al.  Robust and Optimal Control: A Two-port Framework Approach , 2014 .

[6]  L. Gigliotti,et al.  Virtual Testing of Large Composite Structures: A Multiple Length/Time-Scale Framework , 2015 .

[7]  Hans Ingo Weber,et al.  An Overview on Non-Ideal Vibrations , 2003 .

[8]  J. Bay Fundamentals of Linear State Space Systems , 1998 .

[9]  Markus C. Becker,et al.  The impact of virtual simulation tools on problem-solving and new product development organization , 2005 .

[10]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[11]  Abhishek Saraswat,et al.  Lumped parameter modelling and methodology for extraction of model parameters for an electrodynamic shaker , 2017 .

[12]  Gang Shen,et al.  Adaptive inverse control of time waveform replication for electrohydraulic shaking table , 2011 .

[13]  B. Peeters,et al.  Virtual shaker testing at V2i: measured-based shaker model and industrial test case , 2016 .

[14]  José Manoel Balthazar,et al.  Comments on a nonlinear and nonideal electromechanical damping vibration absorber, Sommerfeld effect and energy transfer , 2009 .

[15]  F.T.M.J.M. Huizinga,et al.  A practical approach to virtual testing in automotive engineering , 2002 .

[16]  Stefan Kaczmarczyk,et al.  Active vibration control using mechanical and electrical analogies , 2016 .

[17]  Paulo Sergio Varoto,et al.  Interaction Between a Vibration Exciter and the Structure Under Test , 2002 .

[18]  Hendrik Van Brussel,et al.  Frequency domain direct parameter identification for modal analysis: State space formulation , 1989 .

[19]  P. Guillaume,et al.  The PolyMAX Frequency-Domain Method: A New Standard for Modal Parameter Estimation? , 2004 .

[20]  Bart Peeters,et al.  Virtual shaker testing for predicting and improving vibration test performance , 2009 .

[21]  Paulo Sergio Varoto,et al.  Vibration Testing: Theory and Practice , 1995 .

[22]  Guglielmo S. Aglietti,et al.  A Virtual Testing Approach for Spacecraft Structures Post-Correlation Purposes , 2016 .

[23]  Singiresu S. Rao Vibration of Continuous Systems , 2019 .

[24]  Matthew W. Dunnigan,et al.  Wavelet power spectrum smoothing for random vibration control , 1999, IEEE Trans. Ind. Electron..

[25]  Ekaterina Pavlovskaia,et al.  Dynamic interactions between parametric pendulum and electro‐dynamical shaker , 2007 .

[26]  J. Martino,et al.  The shaker parameters estimation, a first step to virtual testing , 2018 .

[27]  Bart Peeters,et al.  Modern Solutions for Ground Vibration Testing of Small, Medium and Large Aircraft , 2008 .

[28]  G. Lang,et al.  Understanding the physics of electrodynamic shaker performance , 2001 .

[29]  John E. Mottershead,et al.  The sensitivity method in finite element model updating: A tutorial (vol 25, pg 2275, 2010) , 2011 .

[30]  Bernard Friedland,et al.  Control System Design: An Introduction to State-Space Methods , 1987 .

[31]  Guglielmo S. Aglietti,et al.  Multi-DOF Transient Testing Validation by Means of Virtual Testing , 2018 .

[32]  Gene F. Franklin,et al.  Digital control of dynamic systems , 1980 .

[33]  Olivier Le Roux,et al.  Virtual testing of aircraft structures , 2011 .

[34]  K. P. S. Rana,et al.  Fuzzy control of an electrodynamic shaker for automotive and aerospace vibration testing , 2011, Expert Syst. Appl..

[35]  S Ricci,et al.  Virtual shaker testing: a novel approach for improving vibration test performance , 2008 .

[36]  George Fox Lang Electrodynamic shaker fundamentals , 1997 .

[37]  Bart Peeters,et al.  Structural Coupling Analyses of Experimental Models in a Virtual Shaker Testing Environment for Numerical Prediction of a Spacecraft Vibration Test , 2017 .