Optical and photovoltaic properties of indium selenide thin films prepared by van der Waals epitaxy

Indium selenide thin films have been grown on p-type gallium selenide single crystal substrates by van der Waals epitaxy. The use of two crucibles in the growth process has resulted in indium selenide films with physical properties closer to these of bulk indium selenide than those prepared by other techniques. The optical properties of the films have been studied by electroabsorption measurements. The band gap and its temperature dependence are very close to those of indium selenide single crystals. The width of the fundamental transition, even if larger than that of the pure single crystal material, decreases monotonously with temperature. Exciton peaks are not observed even at low temperature, which reveals that these layers still contain a large defect concentration. The current–voltage characteristic of indium selenide thin film devices was measured under simulated AM2 conditions. The solar conversion efficiency of these devices is lower than 0.6%. The high concentration of defects reduces the diffusion length of minority carriers down to values round to 0.2 μm.

[1]  W. Jaegermann,et al.  Single crystalline GaSe/WSe2 heterointerfaces grown by van der Waals epitaxy. I. Growth conditions , 1994 .

[2]  J. Camassel,et al.  Excitonic absorption edge of indium selenide , 1978 .

[3]  S. Okamura,et al.  Structural properties of In-Se thin films prepared by direct evaporation of InSe chunk , 1991 .

[4]  B. Parkinson,et al.  Thermal decomposition of SnS2 and SnSe2: Novel molecular‐beam epitaxy sources for sulfur and selenium , 1992 .

[5]  W. Jaegermann,et al.  Van der Waals epitaxy of thin InSe films on MoTe2 , 1994 .

[6]  J. Herrero,et al.  Optimisation of indium tin oxide thin films for photovoltaic applications , 1995 .

[7]  A. Godoy,et al.  The influence of microcrystalline inhomogeneities embedded in amorphous ? films on their electrical and optical properties , 1996 .

[8]  Atsushi Koma,et al.  Van der Waals epitaxy—a new epitaxial growth method for a highly lattice-mismatched system , 1992 .

[9]  W. Jaegermann,et al.  Band lineup of lattice mismatched InSe/GaSe quantum well structures prepared by van der Waals epitaxy: Absence of interfacial dipoles , 1996 .

[10]  C. Julien,et al.  Growth conditions and structure of polycrystalline InSe thin films , 1988 .

[11]  C. Julien,et al.  Transformation steps of structure in flash-deposited films of a-InSe , 1990 .

[12]  W. Jaegermann,et al.  Electronically Decoupled Films of InSe Prepared by van der Waals Epitaxy: Localized and Delocalized Valence States , 1998 .

[13]  C. Julien,et al.  Growth and characterizations of Cd-doped InSe films , 1994 .

[14]  A. Chevy,et al.  Reflection high‐energy electron diffraction studies of InSe and GaSe layered compounds grown by molecular beam epitaxy , 1992 .

[15]  M. Eddrief,et al.  X-ray, reflection high electron energy diffraction and X-ray photoelectron spectroscopy studies of InSe and γ-In2Se3 thin films grown by molecular beam deposition , 1994 .

[16]  H. Abe,et al.  Hetero-epitaxy of layered compound semiconductor GaSe onto GaAs surfaces for very effective passivation of nanometer structures , 1992 .

[17]  S. Chaudhuri,et al.  Effects of heat treatment on the optical and structural properties of InSe thin films , 1988 .

[18]  J. Bernède,et al.  Change in the type of majority carriers in disordered lnxSe100−x thin-film alloys , 1996, Journal of Materials Science.

[19]  K. Allakhverdiev,et al.  Growth and characterization of polycrystalline InSe thin films , 1995 .

[20]  J. Guesdon,et al.  Photoconductivity and photovoltaic effect in indium selenide , 1983 .

[21]  Wolfram Jaegermann,et al.  Single crystalline GaSe/WSe2 heterointerfaces grown by van der Waals epitaxy. II. Junction characterization , 1994 .

[22]  C. Julien,et al.  Electrical and Photovoltaic Properties of InxSe1−x Thin Films , 1987 .

[23]  A. Khelfa,et al.  Transport properties of InSex flash evaporated thin films , 1995, Journal of Materials Science.

[24]  M. Konagai,et al.  Heteroepitaxy of Layered Compound InSe and InSe/GaSe onto GaAs Substrates , 1998 .

[25]  P. Siciliano,et al.  Electrical properties of vacuum-deposited polycrystalline InSe thin films , 1991 .

[26]  A. Chevy,et al.  Transport properties of nitrogen doped p-gallium selenide single crystals , 1996 .

[27]  M. Wanlass,et al.  Investigation of buried homojunctions in p‐InP formed during sputter deposition of both indium tin oxide and indium oxide , 1990 .

[28]  J. Bauwens A new approach to describe the tensile stress-strain curve of a glassy polymer , 1978 .

[29]  G. Collins,et al.  Organic/inorganic-molecular beam epitaxy: formation of an ordered phthalocyanine/tin(IV) sulfide heterojunction , 1991 .

[30]  T. Kutty,et al.  Formation of Single-Phase Indium Selenide Thin Films by Elemental Evaporation , 1990 .

[31]  K. Ueno,et al.  Heteroepitaxial growth of layered transition metal dichalcogenides on sulfur‐terminated GaAs{111} surfaces , 1990 .

[32]  J. Guesdon,et al.  Photovoltaic effect in InSe - Application to Solar Energy Conversion , 1979 .

[33]  W. Jaegermann,et al.  Photovoltaic properties of indium selenide thin films prepared by van der Waals epitaxy , 1997 .

[34]  J. Guesdon,et al.  Growth conditions and optical properties of InxSe1−x thin films , 1987 .

[35]  A. Chevy,et al.  Tin-related double acceptors in gallium selenide single crystals , 1998 .

[36]  J. Martínez‐Pastor,et al.  Electrical and photovoltaic properties of indium‐tin‐oxide/p‐InSe/Au solar cells , 1987 .