Curve construction based on five trigonometric blending functions

Five new trigonometric blending functions with two exponential shape parameters are given in this paper. Based on these blending functions, trigonometric Bézier curves analogous to the quartic Bézier curves, with two exponential shape parameters, are presented. The ellipses and parabolas can be represented exactly by using the trigonometric Bézier curves. Based on the blending functions, trigonometric B-spline curves with three local shape parameters and a global shape parameter are also constructed. The obtained spline curves can be C2∩FC2k+3 (k∈ℤ+) continuous by fixing some values of the shape parameters. Without solving a linear system, the spline curves can be also used to interpolate sets of points with C2 continuity partly or entirely.

[1]  Xuli Han,et al.  A class of general quartic spline curves with shape parameters , 2011, Comput. Aided Geom. Des..

[2]  Francesca Pelosi,et al.  New spline spaces with generalized tension properties , 2008 .

[3]  John E. Lavery Shape-preserving univariate cubic and higher-degree L1 splines with function-value-based and multistep minimization principles , 2009, Comput. Aided Geom. Des..

[4]  Xuli Han,et al.  Cubic trigonometric polynomial curves with a shape parameter , 2004, Comput. Aided Geom. Des..

[5]  Imre Juhász,et al.  On the quartic curve of Han , 2009 .

[6]  Gerald Farin,et al.  Curves and surfaces for computer aided geometric design , 1990 .

[7]  Xuli Han,et al.  Piecewise quartic polynomial curves with a local shape parameter , 2006 .

[8]  Marie-Laurence Mazure,et al.  Quasi-Chebyshev splines with connection matrices: application to variable degree polynomial splines , 2001, Comput. Aided Geom. Des..

[9]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[10]  Wanqiang Shen,et al.  Changeable degree spline basis functions , 2010, J. Comput. Appl. Math..

[11]  Paolo Costantini,et al.  Curve and surface construction using variable degree polynomial splines , 2000, Comput. Aided Geom. Des..

[12]  Olivier Gibaru,et al.  C1 and C2-continuous polynomial parametric Lp splines (p>=1) , 2007, Comput. Aided Geom. Des..

[13]  Carla Manni,et al.  Geometric construction of spline curves with tension properties , 2003, Comput. Aided Geom. Des..

[14]  John E. Lavery Shape-preserving, first-derivative-based parametric and nonparametric cubic L1 spline curves , 2006, Comput. Aided Geom. Des..

[15]  Voon Pang Kong,et al.  Shape preserving approximation by spatial cubic splines , 2009, Comput. Aided Geom. Des..

[16]  Xuli Han,et al.  Quadratic trigonometric polynomial curves with a shape parameter , 2002, Comput. Aided Geom. Des..