RECURSIVE COMPUTATION OF THE INVARIANT DISTRIBUTION OF A DIFFUSION: THE CASE OF A WEAKLY MEAN REVERTING DRIFT

'Laboratoire d'Analyse et de Mathematiques Appliquees, UMR 8050, Universite de Marne-laVallee, Cite Descartes, 5 boulevard Descartes, Champs-sur-Marne, F-77454 Marne-la-Vallee Cedex 2, France. E-mail: dlamb@math.univ-mlv.fr 2Laboratoire de Probabilites et Modcles Aleatoires, UMR 7599, Universite Pierre et Marie Curie, case 188, 4 place Jussieu, F-75252 Paris Cedex 05, France. E-mail: gpa@ccr.jussieu.fr

[1]  J. Doob Stochastic processes , 1953 .

[2]  J. Neveu,et al.  Martingales à temps discret , 1973 .

[3]  P. Hall,et al.  Martingale Limit Theory and Its Application , 1980 .

[4]  R. Khasminskii Stochastic Stability of Differential Equations , 1980 .

[5]  P. Hall,et al.  Martingale Limit Theory and its Application. , 1984 .

[6]  P. Donnelly MARKOV PROCESSES Characterization and Convergence (Wiley Series in Probability and Mathematical Statistics) , 1987 .

[7]  Ioannis Karatzas,et al.  Brownian Motion and Stochastic Calculus , 1987 .

[8]  Albert M. Fisher Convex-invariant means and a pathwise central limit theorem , 1987 .

[9]  Peter Schatte,et al.  On Strong Versions of the Central Limit Theorem , 1988 .

[10]  Gunnar A. Brosamler,et al.  An almost everywhere central limit theorem , 1988, Mathematical Proceedings of the Cambridge Philosophical Society.

[11]  D. Talay Second-order discretization schemes of stochastic differential systems for the computation of the invariant law , 1990 .

[12]  Walter Philipp,et al.  A note on the almost sure central limit theorem , 1990 .

[13]  Gopal K. Basak,et al.  Stability in Distribution for a Class of Singular Diffusions , 1992 .

[14]  Lajos Horváth,et al.  Invariance principles for logarithmic averages , 1992 .

[15]  M. Piccioni,et al.  An Iterative Monte Carlo Scheme for Generating Lie Group-Valued Random Variables , 1994 .

[16]  D. Nualart The Malliavin Calculus and Related Topics , 1995 .

[17]  Version forte du théorème de la limite centrale fonctionnel pour les martingales , 1996 .

[18]  Gopal K. Basak,et al.  Weak convergence of recursions , 1997 .

[19]  M. Pelletier Weak convergence rates for stochastic approximation with application to multiple targets and simulated annealing , 1998 .

[20]  Matthias K. Heck The principle of large deviations for the almost everywhere central limit theorem , 1998 .

[21]  M. Pelletier An almost sure central limit theorem for stochastic approximation algorithms , 1999 .

[22]  B. Roynette,et al.  Convergence rate of some semi-groups to their invariant probability , 1999 .

[23]  Mariane Pelletier,et al.  Asymptotic Almost Sure Efficiency of Averaged Stochastic Algorithms , 2000, SIAM J. Control. Optim..

[24]  F. Chaâbane,et al.  Théorèmes limites avec poids pour les martingales vectorielles , 2000 .

[25]  F. Chaabane INVARIANCE PRINCIPLES WITH LOGARITHMIC AVERAGING FOR MARTINGALES , 2001 .

[26]  Endre Csáki,et al.  A universal result in almost sure central limit theory , 2001 .

[27]  G. Pagès,et al.  Sur quelques algorithmes rcursifs pour les probabilits numriques , 2001 .

[28]  Principes d’invariance par moyennisation logarithmique pour processus de markov , 2001 .

[29]  Jonathan C. Mattingly,et al.  Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise , 2002 .