RECURSIVE COMPUTATION OF THE INVARIANT DISTRIBUTION OF A DIFFUSION: THE CASE OF A WEAKLY MEAN REVERTING DRIFT
暂无分享,去创建一个
[1] J. Doob. Stochastic processes , 1953 .
[2] J. Neveu,et al. Martingales à temps discret , 1973 .
[3] P. Hall,et al. Martingale Limit Theory and Its Application , 1980 .
[4] R. Khasminskii. Stochastic Stability of Differential Equations , 1980 .
[5] P. Hall,et al. Martingale Limit Theory and its Application. , 1984 .
[6] P. Donnelly. MARKOV PROCESSES Characterization and Convergence (Wiley Series in Probability and Mathematical Statistics) , 1987 .
[7] Ioannis Karatzas,et al. Brownian Motion and Stochastic Calculus , 1987 .
[8] Albert M. Fisher. Convex-invariant means and a pathwise central limit theorem , 1987 .
[9] Peter Schatte,et al. On Strong Versions of the Central Limit Theorem , 1988 .
[10] Gunnar A. Brosamler,et al. An almost everywhere central limit theorem , 1988, Mathematical Proceedings of the Cambridge Philosophical Society.
[11] D. Talay. Second-order discretization schemes of stochastic differential systems for the computation of the invariant law , 1990 .
[12] Walter Philipp,et al. A note on the almost sure central limit theorem , 1990 .
[13] Gopal K. Basak,et al. Stability in Distribution for a Class of Singular Diffusions , 1992 .
[14] Lajos Horváth,et al. Invariance principles for logarithmic averages , 1992 .
[15] M. Piccioni,et al. An Iterative Monte Carlo Scheme for Generating Lie Group-Valued Random Variables , 1994 .
[16] D. Nualart. The Malliavin Calculus and Related Topics , 1995 .
[17] Version forte du théorème de la limite centrale fonctionnel pour les martingales , 1996 .
[18] Gopal K. Basak,et al. Weak convergence of recursions , 1997 .
[19] M. Pelletier. Weak convergence rates for stochastic approximation with application to multiple targets and simulated annealing , 1998 .
[20] Matthias K. Heck. The principle of large deviations for the almost everywhere central limit theorem , 1998 .
[21] M. Pelletier. An almost sure central limit theorem for stochastic approximation algorithms , 1999 .
[22] B. Roynette,et al. Convergence rate of some semi-groups to their invariant probability , 1999 .
[23] Mariane Pelletier,et al. Asymptotic Almost Sure Efficiency of Averaged Stochastic Algorithms , 2000, SIAM J. Control. Optim..
[24] F. Chaâbane,et al. Théorèmes limites avec poids pour les martingales vectorielles , 2000 .
[25] F. Chaabane. INVARIANCE PRINCIPLES WITH LOGARITHMIC AVERAGING FOR MARTINGALES , 2001 .
[26] Endre Csáki,et al. A universal result in almost sure central limit theory , 2001 .
[27] G. Pagès,et al. Sur quelques algorithmes rcursifs pour les probabilits numriques , 2001 .
[28] Principes d’invariance par moyennisation logarithmique pour processus de markov , 2001 .
[29] Jonathan C. Mattingly,et al. Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise , 2002 .