A robust multilevel method for hybridizable discontinuous Galerkin method for the Helmholtz equation

A robust multilevel preconditioner based on the hybridizable discontinuous Galerkin method for the Helmholtz equation with high wave number is presented in this paper. There are two keys in our algorithm, one is how to choose a suitable intergrid transfer operator, and the other is using GMRES smoothing on the coarse grids. The multilevel method is performed as a preconditioner in the outer GMRES iteration. To give a quantitative insight of our algorithm, we use local Fourier analysis to analyze the convergence property of the proposed multilevel method. Numerical results show that for fixed wave number, the convergence of the algorithm is mesh independent. Moreover, the performance of the algorithm depends relatively mildly on wave number.

[1]  Haijun Wu,et al.  Discontinuous Galerkin Methods for the Helmholtz Equation with Large Wave Number , 2009, SIAM J. Numer. Anal..

[2]  Cornelis Vuik,et al.  On a Class of Preconditioners for Solving the Helmholtz Equation , 2003 .

[3]  Lexing Ying,et al.  Sweeping Preconditioner for the Helmholtz Equation: Moving Perfectly Matched Layers , 2010, Multiscale Model. Simul..

[4]  Haijun Wu,et al.  Multilevel Preconditioner with Stable Coarse Grid Corrections for the Helmholtz Equation , 2013, SIAM J. Sci. Comput..

[5]  Haijun Wu,et al.  Preasymptotic Error Analysis of CIP-FEM and FEM for Helmholtz Equation with High Wave Number. Part II: hp Version , 2012, SIAM J. Numer. Anal..

[6]  Martin J. Gander,et al.  Why it is Difficult to Solve Helmholtz Problems with Classical Iterative Methods , 2012 .

[7]  D. Brandt,et al.  Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .

[8]  Dianne P. O'Leary,et al.  A Multigrid Method Enhanced by Krylov Subspace Iteration for Discrete Helmholtz Equations , 2001, SIAM J. Sci. Comput..

[9]  B. Engquist,et al.  Sweeping preconditioner for the Helmholtz equation: Hierarchical matrix representation , 2010, 1007.4290.

[10]  Jayadeep Gopalakrishnan,et al.  A convergent multigrid cycle for the hybridized mixed method , 2009, Numer. Linear Algebra Appl..

[11]  Raytcho D. Lazarov,et al.  Unified Hybridization of Discontinuous Galerkin, Mixed, and Continuous Galerkin Methods for Second Order Elliptic Problems , 2009, SIAM J. Numer. Anal..

[12]  Achi Brandt,et al.  Accuracy Properties of the Wave-Ray Multigrid Algorithm for Helmholtz Equations , 2006, SIAM J. Sci. Comput..

[13]  Francisco-Javier Sayas,et al.  A PROJECTION-BASED ERROR ANALYSIS OF HDG METHODS , 2010 .

[14]  Jay Gopalakrishnan,et al.  A Schwarz Preconditioner for a Hybridized Mixed Method , 2003 .

[15]  Yogi A. Erlangga,et al.  Advances in Iterative Methods and Preconditioners for the Helmholtz Equation , 2008 .

[16]  Xuejun Xu,et al.  A Hybridizable Discontinuous Galerkin Method for the Helmholtz Equation with High Wave Number , 2012, SIAM J. Numer. Anal..

[17]  Haijun Wu,et al.  Pre-asymptotic error analysis of CIP-FEM and FEM for the Helmholtz equation with high wave number. Part I: linear version , 2014 .

[18]  Haijun Wu,et al.  hp-Discontinuous Galerkin methods for the Helmholtz equation with large wave number , 2008, Math. Comput..

[19]  Cornelis Vuik,et al.  A Novel Multigrid Based Preconditioner For Heterogeneous Helmholtz Problems , 2005, SIAM J. Sci. Comput..

[20]  A. Brandt,et al.  WAVE-RAY MULTIGRID METHOD FOR STANDING WAVE EQUATIONS , 1997 .

[21]  Alexandre Ern,et al.  Continuous interior penalty hp-finite element methods for advection and advection-diffusion equations , 2007, Math. Comput..

[22]  Francisco-Javier Sayas,et al.  A projection-based error analysis of HDG methods , 2010, Math. Comput..

[23]  Wolfgang Joppich,et al.  Practical Fourier Analysis for Multigrid Methods , 2004 .

[24]  Ronald H. W. Hoppe,et al.  Finite element methods for Maxwell's equations , 2005, Math. Comput..