Biomimetic sensor for certain catecholamines employing copper(II) complex and silver nanoparticle modified glassy carbon paste electrode.

A dimeric Cu(II) complex [Cu(μ(2)-hep)(hep-H)](2)·2ClO(4) (1) containing bidentate (hep-H=2-(2-hydroxyethyl)pyridine) ligand was synthesized and characterized by single crystal X-ray diffraction studies. Each Cu-ion in 1 is in a distorted square pyramidal geometry. Further 1 along with silver nanoparticles (SNPs) have been used as modifier in the construction of a biomimetic sensor (1-SNP-GCPE) for determining certain catecholamines viz., dopamine (DA), levodopa (l-Dopa), epinephrine (EP) and norepinephrine (NE) using cyclic voltammetry, chronocoulometry, electrochemical impedance spectroscopy and adsorptive stripping square wave voltammetry (AdSSWV). Finally, the catalytic properties of the sensor were characterized by chronoamperometry. Employing AdSSWV, the calibration curves showed linear response ranging between 10(-6) and 10(-9)M for all the four analytes with detection limits (S/N=3) of 8.52×10(-10)M, 2.41×10(-9)M, 3.96×10(-10)M and 3.54×10(-10)M for DA, l-Dopa, EP and NE respectively. The lifetime of the biomimetic sensor was 3 months at room temperature. The prepared modified electrode shows several advantages such as simple preparation method, high sensitivity, high stability, ease of preparation and regeneration of the electrode surface by simple polishing along with excellent reproducibility. The method has been applied for the selective and precise analysis of DA, l-Dopa, EP and NE in pharmaceutical formulations, urine and blood serum samples.

[1]  Pradeep Mathur,et al.  Biomimetic sensor for certain phenols employing a copper(II) complex. , 2010, Analytical chemistry.

[2]  B. Rezaei,et al.  p-Aminophenol-multiwall carbon nanotubes-TiO2 electrode as a sensor for simultaneous determination of penicillamine and uric acid. , 2010, Colloids and surfaces. B, Biointerfaces.

[3]  A. Babaei,et al.  A Selective Simultaneous Determination of Levodopa and Serotonin Using a Glassy Carbon Electrode Modified with Multiwalled Carbon Nanotube/Chitosan Composite , 2011 .

[4]  Kangbing Wu,et al.  Electrochemistry and determination of epinephrine using a mesoporous Al-incorporated SiO2 modified electrode , 2008 .

[5]  R. Faria,et al.  Electrochemical Determination of Norepinephrine on Cathodically Pretreated Poly(1,5-diaminonaphthalene) Modified Electrode , 2011 .

[6]  A. Srivastava,et al.  Simultaneous voltammetric determination of acetaminophen, aspirin and caffeine using an in situ surfactant-modified multiwalled carbon nanotube paste electrode , 2010 .

[7]  Lan Wang,et al.  Enhanced sensing of dopamine in the present of ascorbic acid based on graphene/poly(p-aminobenzoic acid) composite film. , 2011, Colloids and surfaces. B, Biointerfaces.

[8]  R. Goyal,et al.  Effect of gold nanoparticle attached multi-walled carbon nanotube-layered indium tin oxide in monitoring the effect of paracetamol on the release of epinephrine. , 2011, Analytica chimica acta.

[9]  G. S. Wilson,et al.  Rotating ring-disk enzyme electrode for biocatalysis kinetic studies and characterization of the immobilized enzyme layer , 1980 .

[10]  Xiaogang Qu,et al.  Silver nanoprobe for sensitive and selective colorimetric detection of dopamine via robust Ag-catechol interaction. , 2011, Chemical communications.

[11]  Xuni Cao,et al.  Colloidal silver nanoparticles modified electrode and its application to the electroanalysis of Cytochrome c , 2008 .

[12]  L. Kubota,et al.  Development of an Amperometric Sensor Highly Selective For Dopamine and Analogous Compounds Determination Using Bis(2,2′-Bipyridil) Copper(II) Chloride Complex , 2003 .

[13]  Syed Sakhawat Shah,et al.  Colloids and Surfaces A , 1999 .

[14]  K. Vytras,et al.  Recent Advances in Electroanalysis of Organic Compounds at Carbon Paste Electrodes , 2009 .

[15]  S. Mobin,et al.  Vapor-diffusion-mediated single crystal-to-single crystal transformation of a discrete dimeric copper(II) complex to a discrete tetrameric copper(II) complex. , 2009, Inorganic chemistry.

[16]  Zhihua Wang,et al.  A novel nanocomposites sensor for epinephrine detection in the presence of uric acids and ascorbic acids , 2011 .

[17]  A. Srivastava,et al.  Simultaneous voltammetric determination of acetaminophen and tramadol using Dowex50wx2 and gold nanoparticles modified glassy carbon paste electrode. , 2011, Analytica chimica acta.

[18]  A. Babaei,et al.  Multi-walled carbon nanotubes/chitosan polymer composite modified glassy carbon electrode for sensitive simultaneous determination of levodopa and morphine , 2011 .

[19]  S. Karna,et al.  Potentiometric stripping analysis of bismuth based on carbon paste electrode modified with cryptand (2.2.1) and multiwalled carbon nanotubes , 2010 .

[20]  Martin M. F. Choi,et al.  A simple and sensitive CE method for the simultaneous determination of catecholamines in urine with in-column optical fiber light-emitting diode-induced fluorescence detection. , 2011, Talanta.

[21]  Minghui Yang,et al.  Electrochemical determination of dopamine in the presence of ascorbic acid based on the gold nanorods/carbon nanotubes composite film , 2011 .

[22]  J. Barron Phaeochromocytoma: diagnostic challenges for biochemical screening and diagnosis , 2010, Journal of Clinical Pathology.

[23]  L. Nyholm,et al.  Voltammetric Determination of L-Dopa on Poly(3,4-ethylenedioxythiophene)-Single-Walled Carbon Nanotube Composite Modified Microelectrodes , 2010 .

[24]  H. Beitollahi,et al.  Selective voltammetric determination of norepinephrine in the presence of acetaminophen and folic acid at a modified carbon nanotube paste electrode , 2011 .

[25]  Hongying Liu,et al.  Electrogenerated chemiluminescence of Au nanoclusters for the detection of dopamine. , 2011, Analytical chemistry.

[26]  C. West,et al.  Approach to hydrophilic interaction chromatography column selection: application to neurotransmitters analysis. , 2010, Journal of chromatography. A.

[27]  M. Whiting,et al.  Simultaneous measurement of urinary metanephrines and catecholamines by liquid chromatography with tandem mass spectrometric detection , 2009, Annals of clinical biochemistry.

[28]  Dan Xiao,et al.  Selective detection of dopamine in the presence of uric acid using a gold nanoparticles-poly(luminol) hybrid film and multi-walled carbon nanotubes with incorporated β-cyclodextrin modified glassy carbon electrode. , 2011, Talanta.

[29]  Mona Khafaji,et al.  Application of pyrolytic graphite modified with nano-diamond/graphite film for simultaneous voltammetric determination of epinephrine and uric acid in the presence of ascorbic acid , 2010 .

[30]  Dong-Hwang Chen,et al.  Simultaneous determination of norepinephrine, uric acid, and ascorbic acid at a screen printed carbon electrode modified with polyacrylic acid-coated multi-wall carbon nanotubes. , 2010, Biosensors & bioelectronics.

[31]  K. Vytras,et al.  Carbon paste electrodes in the new millennium , 2009 .

[32]  A. Srivastava,et al.  Potentiometric stripping analysis of antimony based on carbon paste electrode modified with hexathia crown ether and rice husk. , 2011, Analytica chimica acta.

[33]  M. Noroozifar,et al.  Simultaneous and sensitive determination of a quaternary mixture of AA, DA, UA and Trp using a modified GCE by iron ion-doped natrolite zeolite-multiwall carbon nanotube. , 2011, Biosensors & bioelectronics.

[34]  C. Elfakir,et al.  Evaluation of fused-core and monolithic versus porous silica-based C18 columns and porous graphitic carbon for ion-pairing liquid chromatography analysis of catecholamines and related compounds. , 2011, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[35]  S. Karna,et al.  Potentiometric stripping analysis of methyl and ethyl parathion employing carbon nanoparticles and halloysite nanoclay modified carbon paste electrode. , 2012, Analytica chimica acta.

[36]  B. Ganjipour,et al.  Simultaneous determination of levodopa, carbidopa and tryptophan using nanostructured electrochemical sensor based on novel hydroquinone and carbon nanotubes: Application to the analysis of some real samples , 2011 .

[37]  Longxin Chen,et al.  Selective determination of L-dopa in the presence of uric acid and ascorbic acid at a gold nanoparticle self-assembled carbon nanotube-modified pyrolytic graphite electrode , 2010 .

[38]  Ashwini K. Srivastava,et al.  Adsorptive stripping differential pulse voltammetric determination of venlafaxine and desvenlafaxine employing Nafion–carbon nanotube composite glassy carbon electrode , 2011 .

[39]  M. Martínez,et al.  Determination of lamotrigine by adsorptive stripping voltammetry using silver nanoparticle-modified carbon screen-printed electrodes. , 2007 .

[40]  Fanggui Ye,et al.  Quantum dot-enhanced chemiluminescence detection for simultaneous determination of dopamine and epinephrine by capillary electrophoresis. , 2011, Talanta.

[41]  M. Mazloum‐Ardakani,et al.  Simultaneous and selective voltammetric determination of epinephrine, acetaminophen and folic acid at a ZrO2 nanoparticles modified carbon paste electrode , 2011 .

[42]  S. Mobin,et al.  Single-crystal to single-crystal transformations in discrete hydrated dimeric copper complexes. , 2010, Dalton transactions.

[43]  R. Nehmé,et al.  Analysis of urinary neurotransmitters by capillary electrophoresis: sensitivity enhancement using field-amplified sample injection and molecular imprinted polymer solid phase extraction. , 2011, Analytica chimica acta.

[44]  Lauro T. Kubota,et al.  Tris (2,2′-bipyridil) copper (II) chloride complex: a biomimetic tyrosinase catalyst in the amperometric sensor construction , 2003 .

[45]  R. Peralta,et al.  Development of a biomimetic chitosan film-coated gold electrode for determination of dopamine in the presence of ascorbic acid and uric acid , 2010 .

[46]  J. Hart,et al.  Determination of catecholamines in urine using hydrophilic interaction chromatography with electrochemical detection. , 2011, Journal of chromatography. A.

[47]  Sergey A. Piletsky,et al.  Electrochemical sensor for catechol and dopamine based on a catalytic molecularly imprinted polymer-conducting polymer hybrid recognition element. , 2009, Analytical chemistry.

[48]  Wanzhi. Wei,et al.  Application of multi-walled carbon nanotubes modified carbon ionic liquid electrode for electrocatalytic oxidation of dopamine. , 2011, Colloids and surfaces. B, Biointerfaces.

[49]  N. C. van de Merbel,et al.  Quantitative determination of free and total dopamine in human plasma by LC-MS/MS: the importance of sample preparation. , 2011, Bioanalysis.

[50]  A. Srivastava,et al.  Electrochemical behavior of folic acid at calixarene based chemically modified electrodes and its determination by adsorptive stripping voltammetry , 2007 .

[51]  Sunita Bishnoi,et al.  Simultaneous determination of epinephrine and norepinephrine in human blood plasma and urine samples using nanotubes modified edge plane pyrolytic graphite electrode. , 2011, Talanta.

[52]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[53]  R. Peralta,et al.  Determination of chlorogenic acid in coffee using a biomimetic sensor based on a new tetranuclear copper(II) complex. , 2008, Talanta.