Verification of Temporal Properties of Processes in a Setting with Data

We define a value-based modal µ-calculus, built from first-order formulas, modalities, and fixed point operators parameterized by data variables, which allows to express temporal properties involving data. We interpret this logic over µCrl terms defined by linear process equations. The satisfaction of a temporal formula by a µCrl term is translated to the satisfaction of a first-order formula containing parameterized fixed point operators. We provide proof rules for these fixed point operators and show their applicability on various examples.

[1]  Alban Ponse,et al.  Translating a process algebra with symbolic data values to linear format , 1995 .

[2]  Paul Crubillé,et al.  A Linear Algorithm to Solve Fixed-Point Equations on Transition Systems , 1988, Inf. Process. Lett..

[3]  Julian Rathke,et al.  Local Model Checking for a Value-Based Modal µ-Calculus , 1996 .

[4]  Mads Dam Model Checking Mobile Processes , 1993, CONCUR.

[5]  Mads Dam,et al.  CTL* and ECTL* as Fragments of the Modal µ-Calculus , 1992, CAAP.

[6]  E. Clarke,et al.  Automatic Veriication of Nite-state Concurrent Systems Using Temporal-logic Speciications. Acm , 1993 .

[7]  Dexter Kozen,et al.  RESULTS ON THE PROPOSITIONAL’p-CALCULUS , 2001 .

[8]  Jan Friso Groote,et al.  The Syntax and Semantics of μCRL , 1995 .

[9]  Joseph Y. Halpern,et al.  “Sometimes” and “not never” revisited: on branching versus linear time temporal logic , 1986, JACM.

[10]  Carron Shankland,et al.  The Tree Identify Protocol of Ieee 1394 , 1998 .

[11]  Jan Friso Groote,et al.  Invariants in Process Algebra with Data , 1993, CONCUR.

[12]  Jan Friso Groote,et al.  A Bounded Retransmission Protocol for Large Data Packets , 1993, AMAST.

[13]  Henrik Reif Andersen Model Checking and Boolean Graphs , 1992, ESOP.

[14]  A. Tarski A LATTICE-THEORETICAL FIXPOINT THEOREM AND ITS APPLICATIONS , 1955 .

[15]  Dirk van Dalen,et al.  Logic and structure , 1980 .

[16]  J. F. Groote,et al.  Focus Points and Convergent Process Operators , 1995 .

[17]  Jan Friso Groote,et al.  A Correctness Proof of a One-Bit Sliding Window Protocol in µCRL , 1993, Comput. J..

[18]  Zohar Manna,et al.  The Temporal Logic of Reactive and Concurrent Systems , 1991, Springer New York.

[19]  Jan Friso Groote,et al.  Formal Verification of a Leader Election Protocol in Process Algebra , 1997, Theor. Comput. Sci..

[20]  Johan Lewi,et al.  A Linear Algorithm for Solving Fixed-Point Equations on Transition Systems , 1992, CAAP.

[21]  J. F. Groote A note on n similar parallel processes , 1996 .

[22]  Carron Shankland,et al.  The Tree Identify Protocol of IEEE 1394 in μCRL , 1998, Formal Aspects of Computing.

[23]  Dexter Kozen,et al.  Results on the Propositional µ-Calculus , 1982, ICALP.

[24]  Zohar Manna,et al.  Adequate Proof Principles for Invariance and Liveness Properties of Concurrent Programs , 1984, Sci. Comput. Program..

[25]  Rocco De Nicola,et al.  Action versus State based Logics for Transition Systems , 1990, Semantics of Systems of Concurrent Processes.

[26]  Richard E. Ladner,et al.  Propositional Dynamic Logic of Regular Programs , 1979, J. Comput. Syst. Sci..