Antifungal activity of Polymethyl Methacrylate/Si3N4 composites against Candida albicans.

[1]  W. Zhu,et al.  Silicon nitride: a potent solid-state bioceramic inactivator of ssRNA viruses , 2021, Scientific Reports.

[2]  Sonny B. Bal,et al.  Activity and Mechanism of Action of the Bioceramic Silicon Nitride as an Environmentally Friendly Alternative for the Control of the Grapevine Downy Mildew Pathogen Plasmopara viticola , 2020, Frontiers in Microbiology.

[3]  W. Zhu,et al.  Instantaneous “catch‐and‐kill” inactivation of SARS‐CoV‐2 by nitride ceramics , 2020, Clinical and translational medicine.

[4]  G. Pezzotti Silicon nitride: A bioceramic with a gift. , 2019, ACS applied materials & interfaces.

[5]  W. S. Moye-Rowley,et al.  Evidence that Ergosterol Biosynthesis Modulates Activity of the Pdr1 Transcription Factor in Candida glabrata , 2019, mBio.

[6]  R. Beynon,et al.  Specificity of the osmotic stress response in Candida albicans highlighted by quantitative proteomics , 2018, Scientific Reports.

[7]  M. Rodrigues The Multifunctional Fungal Ergosterol , 2018, mBio.

[8]  G. Pezzotti A spontaneous solid-state NO donor to fight antibiotic resistant bacteria , 2018, Materials Today Chemistry.

[9]  Anuj Kumar,et al.  A Genome-Wide Screen of Deletion Mutants in the Filamentous Saccharomyces cerevisiae Background Identifies Ergosterol as a Direct Trigger of Macrophage Pyroptosis , 2018, mBio.

[10]  T. C. White,et al.  Overexpression or Deletion of Ergosterol Biosynthesis Genes Alters Doubling Time, Response to Stress Agents, and Drug Susceptibility in Saccharomyces cerevisiae , 2018, mBio.

[11]  Sonny B. Bal,et al.  In vitro antibacterial activity of oxide and non-oxide bioceramics for arthroplastic devices: I. In situ time-lapse Raman spectroscopy. , 2018, The Analyst.

[12]  M. Ghannoum,et al.  Methodologies for in vitro and in vivo evaluation of efficacy of antifungal and antibiofilm agents and surface coatings against fungal biofilms , 2018, Microbial cell.

[13]  E. Marin,et al.  Incorporating Si3 N4 into PEEK to Produce Antibacterial, Osteocondutive, and Radiolucent Spinal Implants. , 2018, Macromolecular bioscience.

[14]  Q. Li,et al.  Sterol uptake and sterol biosynthesis act coordinately to mediate antifungal resistance in Candida glabrata under azole and hypoxic stress , 2018, Molecular medicine reports.

[15]  P. Růžek,et al.  Sensitivity of fungi to urea, ammonium nitrate and their equimolar solution UAN , 2018 .

[16]  K. Lancaster,et al.  Nitric oxide is an obligate bacterial nitrification intermediate produced by hydroxylamine oxidoreductase , 2017, Proceedings of the National Academy of Sciences.

[17]  L. Carpentier,et al.  Structural and vibrational characterization of sugar arabinitol structures employing micro-Raman spectra and DFT calculations , 2017 .

[18]  J. Latgé,et al.  The Fungal Cell Wall: Structure, Biosynthesis, and Function , 2017, Microbiology spectrum.

[19]  Wenliang Zhu,et al.  Bioactive silicon nitride: A new therapeutic material for osteoarthropathy , 2017, Scientific Reports.

[20]  M. Ide,et al.  Silicon Nitride (Si3N4) Implants: The Future of Dental Implantology? , 2017, The Journal of oral implantology.

[21]  A. Kamburoğlu,et al.  Evaluation of candida albicans biofilm formation on various dental restorative material surfaces , 2017, Nigerian journal of clinical practice.

[22]  D. Hogan,et al.  Global Role of Cyclic AMP Signaling in pH-Dependent Responses in Candida albicans , 2016, mSphere.

[23]  Zsuzsanna Heiner,et al.  Surface-Enhanced Hyper-Raman Spectra of Adenine, Guanine, Cytosine, Thymine, and Uracil , 2016, The journal of physical chemistry. C, Nanomaterials and interfaces.

[24]  Lan Yan,et al.  The synthesis, regulation, and functions of sterols in Candida albicans: Well-known but still lots to learn , 2016, Virulence.

[25]  Wenliang Zhu,et al.  Silicon Nitride Bioceramics Induce Chemically Driven Lysis in Porphyromonas gingivalis. , 2016, Langmuir : the ACS journal of surfaces and colloids.

[26]  M. Kordowska-Wiater Production of arabitol by yeasts: current status and future prospects , 2015, Journal of applied microbiology.

[27]  K. Jolliffe,et al.  Luminescent probes for the bioimaging of small anionic species in vitro and in vivo. , 2015, Chemical Society reviews.

[28]  C. Masciovecchio,et al.  Oxidative damage in DNA bases revealed by UV resonant Raman spectroscopy. , 2015, The Analyst.

[29]  J. Bagan,et al.  Current treatment of oral candidiasis: A literature review , 2014, Journal of clinical and experimental dentistry.

[30]  J. Konopka,et al.  Fungal membrane organization: the eisosome concept. , 2014, Annual review of microbiology.

[31]  M. Jacobsen,et al.  Stress adaptation in a pathogenic fungus , 2014, Journal of Experimental Biology.

[32]  F. Sutterwala,et al.  Candida albicans Triggers NLRP3-Mediated Pyroptosis in Macrophages , 2013, Eukaryotic Cell.

[33]  B. P. Krom,et al.  Streptococcus mutans, Candida albicans, and the Human Mouth: A Sticky Situation , 2013, PLoS pathogens.

[34]  T. Huser,et al.  Methods and Applications of Raman Microspectroscopy to Single-Cell Analysis , 2013, Applied spectroscopy.

[35]  P. Bhargav,et al.  Raman and FTIR Studies on PECVD Grown Ammonia-Free Amorphous Silicon Nitride Thin Films for Solar Cell Applications , 2013 .

[36]  C. Kajdas General Approach to Mechanochemistry and Its Relation to Tribochemistry , 2013 .

[37]  Kaitlin F. Mitchell,et al.  Regulatory Role of Glycerol in Candida albicans Biofilm Formation , 2013, mBio.

[38]  R. Rautemaa,et al.  Candidacidal effect of fluconazole and chlorhexidine released from acrylic polymer. , 2013, The Journal of antimicrobial chemotherapy.

[39]  J. Argüelles,et al.  Specific stress-induced storage of trehalose, glycerol and D-arabitol in response to oxidative and osmotic stress in Candida albicans. , 2013, Biochemical and biophysical research communications.

[40]  Duncan W. Wilson,et al.  Candida albicans pathogenicity mechanisms , 2013, Virulence.

[41]  M. Compagnoni,et al.  Effect of an acrylic resin combined with an antimicrobial polymer on biofilm formation , 2012, Journal of applied oral science : revista FOB.

[42]  M. Moriyama,et al.  Close association between oral Candida species and oral mucosal disorders in patients with xerostomia. , 2012, Oral diseases.

[43]  M. H. Fernandes,et al.  The effect of denture adhesives on Candida albicans growth in vitro. , 2012, Gerodontology.

[44]  M. Rosentritt,et al.  Candida albicans biofilm formation on soft denture liners and efficacy of cleaning protocols. , 2012, Gerodontology.

[45]  J. Sobel,et al.  Miconazole mucoadhesive tablets: a novel delivery system. , 2012, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[46]  Y. Sawada,et al.  Warfarin and miconazole oral gel interactions: analysis and therapy recommendations based on clinical data and a pharmacokinetic model , 2011, Journal of clinical pharmacy and therapeutics.

[47]  Y. Chai,et al.  Lack of Trehalose Accelerates H2O2-Induced Candida albicans Apoptosis through Regulating Ca2+ Signaling Pathway and Caspase Activity , 2011, PloS one.

[48]  M. Behr,et al.  Adhesion of Candida albicans to various dental implant surfaces and the influence of salivary pellicle proteins. , 2010, Acta biomaterialia.

[49]  Tetsuo Nagano,et al.  Bioimaging Probes for Reactive Oxygen Species and Reactive Nitrogen Species , 2009, Journal of clinical biochemistry and nutrition.

[50]  M. Iordachescu,et al.  Trehalose biosynthesis in response to abiotic stresses. , 2008, Journal of integrative plant biology.

[51]  A. Zwick,et al.  Raman study and DFT calculations of amino acids , 2008 .

[52]  M. Paul,et al.  Trehalose metabolism and signaling. , 2008, Annual review of plant biology.

[53]  V. Lundblad,et al.  Yeast , 2008 .

[54]  R. Forster,et al.  S-Nitrosylation of platelet alphaIIbbeta3 as revealed by Raman spectroscopy. , 2007, Biochemistry.

[55]  J. Shacka,et al.  Two distinct signaling pathways regulate peroxynitrite-induced apoptosis in PC12 cells , 2006, Cell Death and Differentiation.

[56]  Yasuteru Urano,et al.  Mechanism-based molecular design of highly selective fluorescence probes for nitrative stress. , 2006, Journal of the American Chemical Society.

[57]  W. Coulter,et al.  In vitro susceptibility of oral Candida to seven antifungal agents. , 2005, Oral microbiology and immunology.

[58]  Luc Moens,et al.  Raman spectroscopic study of Lactarius spores (Russulales, Fungi). , 2005, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[59]  M. Richardson,et al.  Changing patterns and trends in systemic fungal infections. , 2005, The Journal of antimicrobial chemotherapy.

[60]  Christoph Krafft,et al.  Near infrared Raman spectra of human brain lipids. , 2005, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[61]  N. Murata,et al.  Improved Abiotic Stress Tolerance in Plants by Accumulation of Osmoprotectants—Gene Transfer Approach , 2005 .

[62]  J. Lodge,et al.  Mechanisms of Resistance to Oxidative and Nitrosative Stress: Implications for Fungal Survival in Mammalian Hosts , 2004, Eukaryotic Cell.

[63]  R. Sylvester,et al.  An open multicentre comparative study of the efficacy, safety and tolerance of fluconazole and itraconazole in the treatment of cancer patients with oropharyngeal candidiasis. , 2004, European journal of cancer.

[64]  M. Pemberton,et al.  Miconazole oral gel and drug interactions , 2004, British Dental Journal.

[65]  R. Darouiche,et al.  Candida Infections of Medical Devices , 2004, Clinical Microbiology Reviews.

[66]  D. Wink,et al.  The chemistry of nitrosative stress induced by nitric oxide and reactive nitrogen oxide species. Putting perspective on stressful biological situations , 2004, Biological chemistry.

[67]  S. Porter,et al.  Formation of Candida albicans biofilms on non-shedding oral surfaces. , 2003, European journal of oral sciences.

[68]  Sang E Park,et al.  Effect of surface-charged poly(methyl methacrylate) on the adhesion of Candida albicans. , 2003, Journal of prosthodontics : official journal of the American College of Prosthodontists.

[69]  S. Challacombe,et al.  Candida albicans Secreted Aspartyl Proteinases in Virulence and Pathogenesis , 2003, Microbiology and Molecular Biology Reviews.

[70]  Steven W. Taylor,et al.  Oxidative Post-translational Modification of Tryptophan Residues in Cardiac Mitochondrial Proteins* , 2003, Journal of Biological Chemistry.

[71]  A. Elbein,et al.  New insights on trehalose: a multifunctional molecule. , 2003, Glycobiology.

[72]  D. Arp,et al.  Metabolism of Inorganic N Compounds by Ammonia-Oxidizing Bacteria , 2003, Critical reviews in biochemistry and molecular biology.

[73]  N. Waecker,et al.  Comparison of fluconazole and nystatin oral suspensions for treatment of oral candidiasis in infants , 2002, The Pediatric infectious disease journal.

[74]  C. De Virgilio,et al.  Disruption in Candida albicans of the TPS2 gene encoding trehalose-6-phosphate phosphatase affects cell integrity and decreases infectivity. , 2002, Microbiology.

[75]  J. Thevelein,et al.  Disruption of the Candida albicans TPS2 Gene Encoding Trehalose-6-Phosphate Phosphatase Decreases Infectivity without Affecting Hypha Formation , 2002, Infection and Immunity.

[76]  Michael S. Feld,et al.  Surface-Enhanced Raman Spectroscopy in Single Living Cells Using Gold Nanoparticles , 2002 .

[77]  G. Pizzo,et al.  Effect of antimicrobial mouthrinses on the in vitro adhesion of Candida albicans to human buccal epithelial cells , 2001, Clinical Oral Investigations.

[78]  E. Fiala,et al.  Analysis of peroxynitrite reactions with guanine, xanthine, and adenine nucleosides by high-pressure liquid chromatography with electrochemical detection: C8-nitration and -oxidation. , 2001, Chemical research in toxicology.

[79]  A. Hooper,et al.  Electron transfer during the oxidation of ammonia by the chemolithotrophic bacterium Nitrosomonas europaea. , 2000, Biochimica et biophysica acta.

[80]  L. Cowen,et al.  Evolution of Drug Resistance in Experimental Populations of Candida albicans , 2000, Journal of bacteriology.

[81]  L. Larsson,et al.  D-arabinitol--a marker for invasive candidiasis. , 1999, Medical mycology.

[82]  C. Schöneich,et al.  Peroxynitrite modification of protein thiols: oxidation, nitrosylation, and S-glutathiolation of functionally important cysteine residue(s) in the sarcoplasmic reticulum Ca-ATPase. , 1999, Biochemistry.

[83]  Chang Generation of volatile ammonia from urea fungicidal to Phellinus noxius in infested wood in soil under controlled conditions. , 1999 .

[84]  S. Tanaka,et al.  Assignment of the Raman active vibration modes of β-Si3N4 using micro-Raman scattering , 1999 .

[85]  J. P. Henderson,et al.  8-Nitro-2'-deoxyguanosine, a specific marker of oxidation by reactive nitrogen species, is generated by the myeloperoxidase-hydrogen peroxide-nitrite system of activated human phagocytes. , 1999, Biochemistry.

[86]  A. D. Russell,et al.  Antiseptics and Disinfectants: Activity, Action, and Resistance , 1999, Clinical Microbiology Reviews.

[87]  T. C. White,et al.  Clinical, Cellular, and Molecular Factors That Contribute to Antifungal Drug Resistance , 1998, Clinical Microbiology Reviews.

[88]  W. Geurtsen,et al.  Substances released from dental resin composites and glass ionomer cements. , 1998, European journal of oral sciences.

[89]  W. Chaffin,et al.  Cell Wall and Secreted Proteins ofCandida albicans: Identification, Function, and Expression , 1998, Microbiology and Molecular Biology Reviews.

[90]  F. Fang Perspectives series: host/pathogen interactions. Mechanisms of nitric oxide-related antimicrobial activity. , 1997, The Journal of clinical investigation.

[91]  K. Hiller,et al.  Resin-modified glass ionomer cements: fluoride release and influence on Streptococcus mutans growth. , 1997, European journal of oral sciences.

[92]  C. Szabó THE PATHOPHYSIOLOGICAL ROLE OF PEROXYNITRITE IN SHOCK, INFLAMMATION, AND ISCHEMIA‐REPERFUSION INJURY , 1996, Shock.

[93]  A. Vázquez-Torres,et al.  Copyright � 1996, American Society for Microbiology Peroxynitrite Contributes to the Candidacidal Activity of Nitric Oxide-Producing Macrophages , 1996 .

[94]  S. A. Mezzasalma,et al.  Characterization of Silicon Nitride Surface in Water and Acid Environment: A General Approach to the Colloidal Suspensions , 1996 .

[95]  J. Sonnefeld Determination of surface charge density parameters of silicon nitride , 1996 .

[96]  A. Vázquez-Torres,et al.  Nitric oxide enhances resistance of SCID mice to mucosal candidiasis. , 1995, The Journal of infectious diseases.

[97]  A. Vázquez-Torres,et al.  γδ T cell-induced nitric oxide production enhances resistance to mucosal candidiasis , 1995, Nature Medicine.

[98]  W. Pryor,et al.  The formation of peroxynitrite in vivo from nitric oxide and superoxide. , 1995, Chemico-biological interactions.

[99]  Y. Nishiyama,et al.  Morphological aspects of cell wall formation during protoplast regeneration in Candida albicans. , 1995, Journal of electron microscopy.

[100]  A. Vázquez-Torres,et al.  Nitric oxide production does not directly increase macrophage candidacidal activity , 1995, Infection and immunity.

[101]  L. Larsson,et al.  Gas chromatographic determination of D-arabinitol/L-arabinitol ratios in urine: a potential method for diagnosis of disseminated candidiasis , 1994, Journal of clinical microbiology.

[102]  H. Edwards,et al.  Fourier transform Raman spectroscopy of bacterial cell walls , 1994 .

[103]  B. Wong,et al.  D-arabitol metabolism in Candida albicans: studies of the biosynthetic pathway and the gene that encodes NAD-dependent D-arabitol dehydrogenase , 1993, Journal of bacteriology.

[104]  P. Puccetti,et al.  Interleukin‐4 and interleukin‐10 inhibit nitric oxide‐dependent macrophage killing of Candida albicans , 1993, European journal of immunology.

[105]  B. Freeman,et al.  Peroxynitrite-induced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide. , 1991, Archives of biochemistry and biophysics.

[106]  D. DePasquale,et al.  Mechanism by which ammonium bicarbonate and ammonium sulfate inhibit mycotoxigenic fungi , 1990, Applied and environmental microbiology.

[107]  M. J. Teixeira de Mattos,et al.  Nitrogen-limited behaviour of micro-organisms growing in the presence of large concentrations of ammonium ions. , 1989, FEMS microbiology letters.

[108]  Jan Greve,et al.  Surface-enhanced Raman spectroscopy of DNA bases , 1986 .

[109]  S. Winkler Denture base resins. , 1984, Dental clinics of North America.

[110]  D. Soll,et al.  A characterization of pH-regulated dimorphism in Candida albicans , 1984, Mycopathologia.

[111]  C. Wells,et al.  Evaluation of serum arabinitol as a diagnostic test for candidiasis , 1983, Journal of clinical microbiology.

[112]  D Kleiner,et al.  The transport of NH3 and NH4+ across biological membranes. , 1981, Biochimica et biophysica acta.

[113]  D. Armstrong,et al.  Rate of arabinitol production by pathogenic yeast species , 1981, Journal of clinical microbiology.

[114]  J. Roboz,et al.  Quantification of arabinitol in serum by selected ion monitoring as a diagnostic technique in invasive candidiasis , 1980, Journal of clinical microbiology.

[115]  K. R. Samaddar,et al.  Evaluation of role of volatile ammonia in fungistasis of soils. , 1980 .

[116]  R. Szargel,et al.  Oral candida of asymptomatic denture wearers. , 1980, International journal of oral surgery.

[117]  A. Tu,et al.  Laser raman scattering of glucosamine N-acetylglucosamine, and glucuronic acid , 1974 .

[118]  E. W. Skinner,et al.  The effect of surface contact in the retention of a denture. , 1951, The Journal of prosthetic dentistry.

[119]  V. Raja,et al.  Trehalose: Metabolism and Role in Stress Signaling in Plants , 2017 .

[120]  M. Del Poeta,et al.  Plasma membrane lipids and their role in fungal virulence. , 2016, Progress in lipid research.

[121]  C. Koga‐Ito,et al.  In vitro antifungal susceptibility of Candida spp. oral isolates from HIV-positive patients and control individuals. , 2011, Brazilian oral research.

[122]  E. Obłąk,et al.  The Influence of Organic Nitrogen Compounds on Melanoma, Bacterial, and Fungal Cells , 2010 .

[123]  G. Calais,et al.  Comparison of the efficacy and safety of miconazole 50‐mg mucoadhesive buccal tablets with miconazole 500‐mg gel in the treatment of oropharyngeal candidiasis , 2008 .

[124]  T. Peng,et al.  Development of Fluorescent Probes for Detection of Peroxynitrite , 2007 .

[125]  J. Ruiz-Herrera,et al.  Molecular organization of the cell wall of Candida albicans and its relation to pathogenicity. , 2006, FEMS yeast research.

[126]  R. Radi,et al.  Inhibition of mitochondrial electron transport by peroxynitrite. , 1994, Archives of biochemistry and biophysics.

[127]  C. Nathan,et al.  Role of nitric oxide synthesis in macrophage antimicrobial activity. , 1991, Current opinion in immunology.

[128]  R. Poulter,et al.  Candida albicans: biology, genetics, and pathogenicity. , 1985, Annual review of microbiology.

[129]  P. Aronson Kinetic properties of the plasma membrane Na+-H+ exchanger. , 1985, Annual review of physiology.

[130]  D. L. Williams,et al.  Inhibition of nitrosation of amines by thiols, alcohols and carbohydrates. , 1982, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.

[131]  P. Hendra,et al.  The laser-Raman and infra-red spectra of poly(methyl methacrylate) , 1969 .