Constructing Synergistic Triazine and Acetylene Cores in Fully Conjugated Covalent Organic Frameworks for Cascade Photocatalytic H2O2 Production

[1]  B. Jia,et al.  Molecularly Engineered Covalent Organic Frameworks for Hydrogen Peroxide Photosynthesis , 2022, Angewandte Chemie.

[2]  Zhibo Li,et al.  Facile construction of fully sp2-carbon conjugated two-dimensional covalent organic frameworks containing benzobisthiazole units , 2022, Nature communications.

[3]  R. Cao,et al.  Metal-organic frameworks bonded with metal N-heterocyclic carbenes for efficient catalysis , 2021, National science review.

[4]  W. Chen,et al.  N-Rich 2D Heptazine Covalent Organic Frameworks as Efficient Metal-Free Photocatalysts , 2021, ACS Catalysis.

[5]  Xiaojun Wu,et al.  Rational Design of Covalent Heptazine Frameworks with Spatially Separated Redox Centers for High‐Efficiency Photocatalytic Hydrogen Peroxide Production , 2021, Advanced materials.

[6]  Xiaobo Li,et al.  Linear Conjugated Polymers for Solar-Driven Hydrogen Peroxide Production: The Importance of Catalyst Stability , 2021, Journal of the American Chemical Society.

[7]  Jimmy C. Yu,et al.  Enhanced Mass Transfer of Oxygen through a Gas–Liquid–Solid Interface for Photocatalytic Hydrogen Peroxide Production , 2021, Advanced Functional Materials.

[8]  Peifang Wang,et al.  Iodide-Induced Fragmentation of Polymerized Hydrophilic Carbon Nitride for High Performance Quasi-Homogeneous Photocatalytic H2O2 Production. , 2021, Angewandte Chemie.

[9]  Dongli Meng,et al.  Highly Selective Tandem Electroreduction of CO2 to Ethylene over Atomically Isolated Nickel-Nitrogen Site/Copper Nanoparticle Catalysts. , 2021, Angewandte Chemie.

[10]  Yasuhiro Shiraishi,et al.  Polythiophene-Doped Resorcinol-Formaldehyde Resin Photocatalysts for Solar-to-Hydrogen Peroxide Energy Conversion. , 2021, Journal of the American Chemical Society.

[11]  Wenjuan Yang,et al.  Atomically dispersed antimony on carbon nitride for the artificial photosynthesis of hydrogen peroxide , 2021, Nature Catalysis.

[12]  Zhifang Wang,et al.  Green synthesis of olefin-linked covalent organic frameworks for hydrogen fuel cell applications , 2021, Nature Communications.

[13]  Xu‐Bing Li,et al.  Rational design of isostructural 2D porphyrin-based covalent organic frameworks for tunable photocatalytic hydrogen evolution , 2021, Nature Communications.

[14]  Kai A. I. Zhang,et al.  Covalent Organic Frameworks Enabling Site-Isolation of Viologen-Derived Electron Transfer Mediators for Stable Photocatalytic Hydrogen Evolution. , 2021, Angewandte Chemie.

[15]  Yue‐Biao Zhang,et al.  Thiazolo[5,4-d]thiazole-Based Donor-Acceptor Covalent Organic Frameworks for Sunlight-Driven Hydrogen Evolution. , 2020, Angewandte Chemie.

[16]  R. Cao,et al.  Multifunctional Gold Nanoparticles@Imidazolium-Based Cationic Covalent Triazine Frameworks for Efficient Tandem Reactions , 2020 .

[17]  C. V. Chandran,et al.  Strongly Reducing (Diarylamino)benzene-Based Covalent Organic Framework for Metal-Free Visible Light Photocatalytic H2O2 Generation , 2020, Journal of the American Chemical Society.

[18]  J. Zou,et al.  Trimethyltriazine-derived olefin-linked covalent organic framework with ultralong nanofibers. , 2020, Science bulletin.

[19]  Daize Mo,et al.  Modulating Benzothiadiazole-Based Covalent Organic Frameworks via Halogenation for Enhanced Photocatalytic Water Splitting: Small Changes Make Big Differences. , 2020, Angewandte Chemie.

[20]  Petra Rovó,et al.  Rational Design of Covalent Cobaloxime–Covalent Organic Framework Hybrids for Enhanced Photocatalytic Hydrogen Evolution , 2020, Journal of the American Chemical Society.

[21]  Fan Zhang,et al.  Vinylene-Bridged 2D Covalent Organic Frameworks via Knoevenagel Condensation of Tricyanomesitylene. , 2020, Journal of the American Chemical Society.

[22]  P. Zhang,et al.  Heteroatom dopants-promoted two-electron O2 reduction for photocatalytic production of H2O2 on polymeric carbon nitride. , 2020, Angewandte Chemie.

[23]  S. Irle,et al.  Topology-Templated Synthesis of Crystalline Porous Covalent Organic Frameworks. , 2020, Angewandte Chemie.

[24]  R. Cao,et al.  Integration of Strong Electron Transporter Tetrathiafulvalene into Metalloporphyrin-Based Covalent Organic Framework for Highly Efficient Electroreduction of CO2 , 2020 .

[25]  Juewen Liu,et al.  Regenerable and stable sp2 carbon-conjugated covalent organic frameworks for selective detection and extraction of uranium , 2020, Nature Communications.

[26]  Liping Guo,et al.  Strong Base Assisted Synthesis of Crystalline Covalent Triazine Framework with High Hydrophilicity via Benzylamine Monomer for Photocatalytic Water Splitting. , 2020, Angewandte Chemie.

[27]  Xiaojun Wu,et al.  Acetylene and Diacetylene Functionalized Covalent Triazine Frameworks as Metal‐Free Photocatalysts for Hydrogen Peroxide Production: A New Two‐Electron Water Oxidation Pathway , 2019, Advanced materials.

[28]  Fan Zhang,et al.  Semiconducting 2D Triazine-Cored Covalent Organic Frameworks with Unsubstituted Olefin Linkages. , 2019, Journal of the American Chemical Society.

[29]  Jianjian Wang,et al.  An Olefin‐Linked Covalent Organic Framework as a Flexible Thin‐Film Electrode for a High‐Performance Micro‐Supercapacitor , 2019, Angewandte Chemie.

[30]  Yasuhiro Shiraishi,et al.  Resorcinol–formaldehyde resins as metal-free semiconductor photocatalysts for solar-to-hydrogen peroxide energy conversion , 2019, Nature Materials.

[31]  Xinchen Wang,et al.  2D sp2 Carbon-Conjugated Covalent Organic Frameworks for Photocatalytic Hydrogen Production from Water , 2019, Chem.

[32]  Yu Han,et al.  Two-dimensional semiconducting covalent organic frameworks via condensation at arylmethyl carbon atoms , 2019, Nature Communications.

[33]  Xianjun Lang,et al.  Designed Synthesis of a 2D Porphyrin-Based sp2 Carbon-Conjugated Covalent Organic Framework for Heterogeneous Photocatalysis. , 2019, Angewandte Chemie.

[34]  Chenhui Zhu,et al.  Porous Crystalline Olefin-Linked Covalent Organic Frameworks. , 2019, Journal of the American Chemical Society.

[35]  Yuekun Lai,et al.  Crafting Mussel‐Inspired Metal Nanoparticle‐Decorated Ultrathin Graphitic Carbon Nitride for the Degradation of Chemical Pollutants and Production of Chemical Resources , 2019, Advanced materials.

[36]  Huilin Hou,et al.  Production of hydrogen peroxide through photocatalytic processes: a critical review of recent advances. , 2020, Angewandte Chemie.

[37]  Reiner Sebastian Sprick,et al.  Sulfone-containing covalent organic frameworks for photocatalytic hydrogen evolution from water , 2018, Nature Chemistry.

[38]  Ib Chorkendorff,et al.  Toward the Decentralized Electrochemical Production of H2O2: A Focus on the Catalysis , 2018 .

[39]  Yu Chen,et al.  Hollow Pd–Sn Nanocrystals for Efficient Direct H2O2 Synthesis: The Critical Role of Sn on Structure Evolution and Catalytic Performance , 2018 .

[40]  Abdullah M. Asiri,et al.  Black Phosphorus and Polymeric Carbon Nitride Heterostructure for Photoinduced Molecular Oxygen Activation , 2018 .

[41]  Xinchen Wang,et al.  Formation of heterostructures via direct growth CN on h-BN porous nanosheets for metal-free photocatalysis , 2017 .

[42]  T. Heine,et al.  Two-dimensional sp2 carbon–conjugated covalent organic frameworks , 2017, Science.

[43]  P. Carniti,et al.  Liquid Phase Direct Synthesis of H2O2: Activity and Selectivity of Pd-Dispersed Phase on Acidic Niobia-Silica Supports , 2017 .

[44]  F. Meneguzzo,et al.  Hydrogen Peroxide: A Key Chemical for Today's Sustainable Development. , 2016, ChemSusChem.

[45]  Yusuke Yamada,et al.  Seawater usable for production and consumption of hydrogen peroxide as a solar fuel , 2016, Nature Communications.

[46]  G. Hutchings,et al.  Palladium-tin catalysts for the direct synthesis of H2O2 with high selectivity , 2016, Science.

[47]  Yasuhiro Shiraishi,et al.  Sunlight-driven hydrogen peroxide production from water and molecular oxygen by metal-free photocatalysts. , 2014, Angewandte Chemie.

[48]  J. Fierro,et al.  Hydrogen peroxide synthesis: an outlook beyond the anthraquinone process. , 2006, Angewandte Chemie.

[49]  Noyori,et al.  A "Green" route to adipic acid: direct oxidation of cyclohexenes with 30 percent hydrogen peroxide , 1998, Science.