Production of gyrating ions from nonlinear wave-particle interaction upstream from the Earth's bow shock: A case study from Cluster-CIS

[1]  J. Eastwood,et al.  On the existence of Alfvén waves in the terrestrial foreshock , 2003 .

[2]  J. Sauvaud,et al.  Bow shock specularly reflected ions in the presence of low-frequency electromagnetic waves: a case study , 2002 .

[3]  T. Horbury,et al.  Cluster observations of fast magnetosonic waves in the terrestrial foreshock , 2002 .

[4]  M. W. Dunlop,et al.  The Cluster Magnetic Field Investigation: overview of in-flight performance and initial results , 2001 .

[5]  I. Papamastorakis,et al.  First multispacecraft ion measurements in and near the Earth's magnetosphere with the identical Cluster ion spectrometry (CIS) experiment , 2001 .

[6]  G. Parks,et al.  Three‐dimensional observations of gyrating ion distributions far upstream from the Earth's bow shock and their association with low‐frequency waves , 2001 .

[7]  C. Mazelle,et al.  Nonlinear wave-particle interaction upstream from the Earth's bow shock , 2000 .

[8]  C. Mazelle,et al.  Oblique ring instability driven by nongyrotropic ions: Application to observations at comet Grigg‐Skjellerup , 1998 .

[9]  Mario H. Acuna,et al.  THE CLUSTER MAGNETIC FIELD INVESTIGATION , 1997 .

[10]  C. Mazelle,et al.  Nongyrotropy of heavy newborn ions at comet Grigg‐Skjellerup and corresponding instability , 1995 .

[11]  N. Omidi,et al.  Linear and nonlinear properties of ULF waves driven by ring‐beam distribution functions , 1995 .

[12]  C. Mazelle,et al.  Discrete wave packets at the proton cyclotron frequency at comet P/Halley , 1993 .

[13]  G. Le A study of ULF wave foreshock morphology. I - ULF foreshock boundary. II - Spatial variation of ULF waves , 1992 .

[14]  S. Gary,et al.  Electromagnetic ion/ion instabilities and their consequences in space plasmas: A review , 1991 .

[15]  A. Roux,et al.  Quasi-monochromatic wave-particle interactions in magnetospheric plasmas , 1987 .

[16]  J. Gosling,et al.  The motion of ions specularly reflected off a quasi-parallel shock in the presence of large-amplitude, monochromatic MHD waves , 1986 .

[17]  H. Matsumoto Coherent nonlinear effects on electromagnetic wave-particle interactions , 1985 .

[18]  M. Hoshino,et al.  Numerical study of the upstream wave excitation mechanism: 1. Nonlinear phase bunching of beam ions , 1985 .

[19]  E. Greenstadt,et al.  Variable field-to-normal angles in the shock foreshock boundary observed by ISEE 1 and 2 , 1985 .

[20]  B. Mauk,et al.  Upstream gyrophase bunched ions: A mechanism for creation at the bow shook and the growth of velocity space structure through gyrophase mixing , 1983 .

[21]  C. Russell,et al.  Plasma rest frame frequencies and polarizations of the low-frequency upstream waves: ISEE 1 and 2 Observations , 1983 .

[22]  S. Schwartz,et al.  Ions upstream of the Earth's bow shock: A theoretical comparison of alternative source populations , 1983 .

[23]  W. Feldman,et al.  Evidence for specularly reflected ions upstream from the quasi‐parallel bow shock , 1982 .

[24]  Martin A. Lee Coupled hydromagnetic wave excitation and ion acceleration upstream of the earth's bow shock , 1982 .

[25]  J. Gosling,et al.  The electromagnetic ion beam instability upstream of the Earth's bow shock , 1981 .

[26]  C. Russell,et al.  Upstream hydromagnetic waves and their association with backstreaming ion populations: ISEE 1 and 2 observations , 1981 .

[27]  C. Bonifazi,et al.  Reflected and diffuse ions backstreaming from the Earth's bow shock 2. Origin , 1981 .

[28]  C. Bonifazi,et al.  Reflected and diffuse ions backstreaming from the Earth's bow shock 1. Basic properties , 1981 .

[29]  N. Sckopke,et al.  Characteristics of reflected and diffuse ions upstream from the earth's bow shock , 1981 .

[30]  B. Mauk,et al.  Non‐E × B ordered ion beams upstream of the Earth's bow shock , 1981 .

[31]  N. Sckopke,et al.  Energization of solar wind ions by reflection from the Earth's bow shock , 1980 .

[32]  C. Russell,et al.  Magnetic field orientation and suprathermal ion streams in the earth's foreshock , 1980 .

[33]  N. Sckopke,et al.  Observations of two distinct populations of bow shock ions in the upstream solar wind , 1978 .

[34]  J. Smith,et al.  Coordinate systems and map projections , 1974 .

[35]  R. Gendrin Phase-bunching and other non-linear processes occurring in gyroresonant wave-particle interactions , 1974 .

[36]  S. Schwartz Shock and Discontinuity Normals, Mach Numbers, and Related Parameters , 1998 .

[37]  P. Daly,et al.  Analysis methods for multi-spacecraft data , 1998 .

[38]  B. Sonnerup,et al.  Minimum and Maximum Variance Analysis , 1998 .

[39]  C. d'Uston,et al.  WIND observation of gyrating-like ion distributions and low frequency waves upstream from the Earth's bow shock , 1997 .

[40]  A. Lazarus,et al.  Unusual locations of Earth's bow shock on September 24–25, 1987: Mach number effects , 1995 .

[41]  M. Dunlop,et al.  Observations of upstream ions, solar wind ions and electromagnetic waves in the Earth's foreshock , 1995 .

[42]  C. Russell,et al.  Gyrating and intermediate ion distributions upstream from the Earth's bow shock , 1986 .

[43]  C. Russell,et al.  The phase relationship between gyrophase-bunched ions and MHD-like waves. [upstream from earth's bow shock] , 1986 .

[44]  C. Russell,et al.  Gyrating ions and large‐amplitude monochromatic MHD waves upstream of the Earth's bow shock , 1985 .