Coordination of Li+, Ca+, V+, and Cu+ to the Molecules S8 and S4 –A Computational Study

The complex formation between the Li+ cation and the sulfur homocycle S8 has been studied by ab initio MO calculations at the G3X(MP2) level of theory. Starting with various isomers of S8, the formation of LiS8 heterocycles and clusters is preferred over complexes with a monodentate ligand. The binding energies of the cation in the 23 complexes investigated range from –95 to –217 kJ·mol–1. The global minimum structure of [LiS8]+ is of C4v symmetry with the S8 homocycle in the well-known crown conformation and four Li–S bonds of length 254.2 pm (binding energy: –156.5 kJ·mol–1). The S–S bonds of the various ligands are slightly weakened by the complex formation and a more or less strong bond length alternation is induced. Relatively unstable isomers of S8 (chair, tub, exo–endo ring, branched rings, triplet chain) are partly stabilized and partly destabilized by complex formation with Li+. The interaction between the cation and the S8 ligands is mainly due to ion–dipole attraction with little to moderate charge transfer (0.04–0.27 electrostatic units). In the four most stable isomers of [LiS8]+, the number of sulfur–sulfur bonds is at a maximum and the coordination number of Li+ is either 4 or 3. Complexes of the type [Li(S4)2]+ are much less stable than isomers with an eight-atomic ligand. The Li–S bond lengths in all of these complex cations (230–273 pm) depend on the coordination number of Li and on the atomic charge of the donating sulfur atom(s). In contrast to [LiS8]+, the complexes of composition [MS8]+ with M = Ca, V, and Cu are more stable as [M(S4)2]+ than with an eight-atomic crown-shaped ligand. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005)

[1]  M. Schröder,et al.  S-Donor Ligands , 2006 .

[2]  M. W. Wong,et al.  Electrophilic attack on sulfur-sulfur bonds: coordination of lithium cations to sulfur-rich molecules studied by ab initio MO methods. , 2005, Chemistry.

[3]  M. W. Wong,et al.  povel isomers of hexasulfur: Prediction of a stable prism isomer and implications for the thermal reactivity of elemental sulfur. , 2004, The Journal of chemical physics.

[4]  T. Rauchfuss Research on soluble metal sulfides: from polysulfido complexes to functional models for the hydrogenases. , 2004, Inorganic chemistry.

[5]  M. W. Wong,et al.  Structure and spectra of tetrasulfur S4 – an ab initio MO study , 2003 .

[6]  M. W. Wong,et al.  Novel species for the sulfur zoo: isomers of S8 , 2002 .

[7]  I. Krossing,et al.  Approaching the gas-phase structures of [AgS8]+ and [AgS16]+ in the solid state. , 2002, Chemistry.

[8]  A. Bacchi,et al.  Coordination of cyclo-octasulfur and cyclo-heptaselenium to dinuclear rhenium(I) systems. , 2002, Inorganic chemistry.

[9]  F. Cotton,et al.  Neutral Cyclooctasulfur as a Polydentate Ligand: Supramolecular Structures of [Rh2 (O2 CCF3 )4 ]n (S8 )m (n:m=1:1, 3:2). , 2001, Angewandte Chemie.

[10]  F. Kong,et al.  Study of Reactions of Silver and Sulfur Clusters , 1999 .

[11]  Krishnan Raghavachari,et al.  Gaussian-3 theory using reduced Mo/ller-Plesset order , 1999 .

[12]  I. Dance Computational Methods for Metal Sulfide Clusters , 1996 .

[13]  I. Dance,et al.  Reactions of 29 Transition Metal Cations, in the Same Oxidation State and under the Same Gas-Phase Conditions, with Sulfur. , 1996, Inorganic Chemistry.

[14]  I. G. Dance,et al.  Bildung und Struktur neuer Metallo- und Metallapolysulfane [MSy]+ (y = 2–16)† , 1995 .

[15]  M. Kanatzidis,et al.  Coordination chemistry of heavy polychalcogenide ligands , 1994 .

[16]  N. Zhang,et al.  The production and photodissociation of iron-sulfur cluster ions , 1993 .

[17]  B. Freiser,et al.  A gas-phase study of FeSn+ (n = 1-6) , 1989 .

[18]  A. Müller,et al.  Polysulfide Complexes of Metals , 1988 .

[19]  Thomas B. Rauchfuss,et al.  Übergangsmetallpolysulfide, Koordinationsverbindungen mit rein anorganischen Chelatliganden , 1985 .

[20]  R. Steudel,et al.  X-ray Structural Analyses of Two Allotropes of Cycloheptasulfur ( γ and δ-S7 ) [1] , 1980 .

[21]  R. Steudel,et al.  Bindungswechselwirkung in Schwefelringen: Kristall-und Molekülstruktur von cyclo-Heptaschwefeloxid, S7O , 1977 .

[22]  Y. W. Yang,et al.  The experimental charge distribution in sulfur containing molecules. Analysis of cyclic octasulfur at 300 and 100 K , 1977 .

[23]  R. Steudel Eigenschaften von Schwefel‐Schwefel‐Bindungen , 1975 .

[24]  B. Eckert,et al.  Molecular Spectra of Sulfur Molecules and Solid Sulfur Allotropes , 2003 .

[25]  R. Steudel Sulfur-Rich Oxides S n O and S n O 2 ( n >1) , 2003 .

[26]  N. Tokitoh,et al.  Polysulfido Complexes of Main Group and Transition Metals , 2003 .

[27]  L. Curtiss,et al.  Gaussian-3X (G3X) theory : use of improved geometries, zero-point energies, and Hartree-Fock basis sets. , 2001 .

[28]  I. Dance,et al.  Lanthanide–sulfur gas-phase chemistry: reactions of Ln+ with S8† , 1998 .

[29]  P. Schleyer,et al.  AB INITIO STUDY OF THE ISOMERISM OF LAB2 SALT MOLECULES WITH 18 AND 20 VALENCE ELECTRONS , 1998 .

[30]  I. Dance,et al.  The anomalous high reactivity of Ca+ with S8 in the gas phase: [CaS3]+ and [CaS11]+ , 1995 .

[31]  G. Sheldrick,et al.  Cyclo-octasulphur as a ligand; preparation and X-ray crystal structure of [Ag(S8)2]AsF6 , 1982 .

[32]  P. Luger,et al.  Schwefel-Sauerstoff-Verbindungen 271) Röntgenstrukturanalyse von Cyclooctaschwefeloxid , 1976 .