Correction of rotational distortion for catheter-based en face OCT and OCT angiography.

We demonstrate a computationally efficient method for correcting the nonuniform rotational distortion (NURD) in catheter-based imaging systems to improve endoscopic en face optical coherence tomography (OCT) and OCT angiography. The method performs nonrigid registration using fiducial markers on the catheter to correct rotational speed variations. Algorithm performance is investigated with an ultrahigh-speed endoscopic OCT system and micromotor catheter. Scan nonuniformity is quantitatively characterized, and artifacts from rotational speed variations are significantly reduced. Furthermore, we present endoscopic en face OCT and OCT angiography images of human gastrointestinal tract in vivo to demonstrate the image quality improvement using the correction algorithm.

[1]  Adrian Mariampillai,et al.  Speckle variance detection of microvasculature using swept-source optical coherence tomography. , 2008, Optics letters.

[2]  Yoshiaki Kawase,et al.  Comparison of nonuniform rotational distortion between mechanical IVUS and OCT using a phantom model. , 2007, Ultrasound in medicine & biology.

[3]  Ruikang K. Wang,et al.  Three dimensional optical angiography. , 2007, Optics express.

[4]  T. Yatagai,et al.  In vivo high-contrast imaging of deep posterior eye by 1-microm swept source optical coherence tomography and scattering optical coherence angiography. , 2007, Optics express.

[5]  Johan G. Bosch,et al.  Azimuthal Registration of Image Sequences Affected by Nonuniform Rotation Distortion , 2008, IEEE Transactions on Information Technology in Biomedicine.

[6]  Petia Radeva,et al.  Fast Rigid Registration of Vascular Structures in IVUS Sequences , 2009, IEEE Transactions on Information Technology in Biomedicine.

[7]  M. Leahy,et al.  Correlation mapping method for generating microcirculation morphology from optical coherence tomography (OCT) intensity images , 2010, Journal of biophotonics.

[8]  Matilda Larsson,et al.  Automatic three-dimensional registration of intravascular optical coherence tomography images. , 2012, Journal of biomedical optics.

[9]  Matthew Brenner,et al.  In vivo endoscopic optical coherence tomography by use of a rotational microelectromechanical system probe. , 2004, Optics letters.

[10]  Johannes F de Boer,et al.  High speed miniature motorized endoscopic probe for optical frequency domain imaging. , 2012, Optics express.

[11]  A. V. D. van der Steen,et al.  Intravascular optical coherence tomography imaging at 3200 frames per second. , 2013, Optics letters.

[12]  David Huang,et al.  Blood flow velocity quantification using split-spectrum amplitude-decorrelation angiography with optical coherence tomography. , 2013, Biomedical optics express.

[13]  J G Fujimoto,et al.  Micromotor endoscope catheter for in vivo, ultrahigh-resolution optical coherence tomography. , 2004, Optics letters.

[14]  Barry Vuong,et al.  In vivo feasibility of endovascular Doppler optical coherence tomography , 2012, Biomedical optics express.

[15]  James G. Fujimoto,et al.  Ultrahigh speed endoscopic swept source optical coherence tomography using a VCSEL light source and micromotor catheter , 2014, Photonics West - Biomedical Optics.

[16]  Matthew Brenner,et al.  In vivo early detection of smoke-induced airway injury using three-dimensional swept-source optical coherence tomography. , 2009, Journal of biomedical optics.

[17]  Martin J Leahy,et al.  Cellular phone‐based photoplethysmographic imaging , 2011, Journal of biophotonics.

[18]  Hiroshi Mashimo,et al.  Endoscopic optical coherence angiography enables 3-dimensional visualization of subsurface microvasculature. , 2014, Gastroenterology.

[19]  Zhao Wang,et al.  Motion artifacts associated with in vivo endoscopic OCT images of the esophagus , 2011, Optics express.