Physically-Based Realistic Fire Rendering

Accurately rendering fires is a challenging problem due to the various subtle ways in which the electromagnetic waves interact with this complex participating medium. We present a new method for physically-based rendering of flames from detailed simulations of flame dynamics which accounts for their unique characteristics. Instead of relying on ad-hoc models, we build on fundamental molecular physics to compute the spectrally dependent absorption, emission and scattering properties of the various chemical compounds found in the fire. Combined with a model of the refractive process, and with tone-mapping techniques simulating the visual adaptation of a human observer, we are able to generate highly realistic renderings of various types of flames, including colorful flames containing chemical species with very characteristic spectral properties.

[1]  Norishige Chiba,et al.  Two-dimensional visual simulation of flames, smoke and the spread of fire , 1994, Comput. Animat. Virtual Worlds.

[2]  Mark Meyer,et al.  Meshes on fire , 2001 .

[3]  Holly E. Rushmeier,et al.  Volume rendering of pool fire data , 1995, IEEE Computer Graphics and Applications.

[4]  Rosalind W. Picard,et al.  Synthesizing Flames and their Spreading , 1994 .

[5]  Eugene Fiume,et al.  Turbulent wind fields for gaseous phenomena , 1993, SIGGRAPH.

[6]  Chiba Norishige,et al.  Image Synthesis of Flickering Scenes Including Simulated Flames , 1997 .

[7]  W. C. Martin,et al.  Atomic Spectra Database , 1999 .

[8]  Greg Humphreys,et al.  Physically Based Rendering: From Theory to Implementation , 2004 .

[9]  François Rousselle,et al.  Enhanced illumination of reconstructed dynamic environments using a real-time flame model , 2006, AFRIGRAPH '06.

[10]  Carlo H. Séquin,et al.  Interactive simulation of fire in virtual building environments , 1997, SIGGRAPH.

[11]  Gautham Krishnamoorthy,et al.  PARALLEL COMPUTATIONS OF RADIATIVE HEAT TRANSFER USING THE DISCRETE ORDINATES METHOD , 2004 .

[12]  Nelson P. Bryner,et al.  Comparison of a fractal smoke optics model with light extinction measurements , 1994 .

[13]  Gang Li,et al.  The HITRAN 2008 molecular spectroscopic database , 2005 .

[14]  Donald P. Greenberg,et al.  A model of visual adaptation for realistic image synthesis , 1996, SIGGRAPH.

[15]  Thomas G. Cleary,et al.  Light Scattering Characteristics And Size Distribution Of Smoke And Nuisance Aerosols , 2003 .

[16]  Thomas C. Henderson,et al.  Simulating accidental fires and explosions , 2000, Comput. Sci. Eng..

[17]  D. L. Urban,et al.  Extinction and Scattering Properties of Soot Emitted from Buoyant Turbulent Diffusion Flames. Appendix D , 2001 .

[18]  Annemie Bogaerts,et al.  Atomic spectroscopy. , 2002, Analytical chemistry.

[19]  Philip J. Smith,et al.  Numerical modeling of radiative heat transfer in pool fire simulations , 2005 .

[20]  Marcus A. Magnor,et al.  Image-based tomographic reconstruction of flames , 2004, SIGGRAPH '04.

[21]  Louis A. Gritzo,et al.  Soot scattering measurements in the visible and near-infrared spectrum , 2000 .

[22]  Alan Chalmers,et al.  Very realistic graphics for visualising archaeological site reconstructions , 2002, SCCG '02.

[23]  A. F. Sarofim,et al.  Optical Constants of Soot and Their Application to Heat-Flux Calculations , 1969 .

[24]  Duc Quang Nguyen,et al.  Physically based modeling and animation of fire , 2002, ACM Trans. Graph..

[25]  Philippe Beaudoin,et al.  Realistic and Controllable Fire Simulation , 2001, Graphics Interface.

[26]  H. Gurney Heat Transmission , 1909, Nature.

[27]  Klaus Mueller,et al.  Simulating fire with texture splats , 2002, IEEE Visualization, 2002. VIS 2002..

[28]  H. R. N. Jones,et al.  Radiation Heat Transfer , 2000 .

[29]  K. Naka,et al.  S‐potentials from luminosity units in the retina of fish (Cyprinidae) , 1966, The Journal of physiology.

[30]  Eugene Fiume,et al.  Depicting fire and other gaseous phenomena using diffusion processes , 1995, SIGGRAPH.

[31]  Masa Inakage A simple model of flames , 1990 .

[32]  Kiriakos N. Kutulakos,et al.  Photo-consistent 3D fire by Flame-Sheet decomposition , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[33]  L. C. Henyey,et al.  Diffuse radiation in the Galaxy , 1940 .

[34]  Marcus A. Magnor,et al.  Image-based tomographic reconstruction of flames , 2004, SCA '04.

[35]  Steve Marschner,et al.  Perceptually based tone mapping of high dynamic range image streams , 2005, EGSR '05.

[36]  Hong Qin,et al.  Voxels on Fire , 2003, IEEE Visualization.

[37]  Laurence S. Rothman,et al.  Reprint of: The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition , 1998 .

[38]  Arnauld Lamorlette,et al.  Structural modeling of flames for a production environment , 2002, SIGGRAPH.

[39]  Jack Sugar,et al.  New NIST Atomic Spectra Database , 1999, Optics & Photonics.

[40]  Karl Sims,et al.  Particle animation and rendering using data parallel computation , 1990, SIGGRAPH.

[41]  Nancy Levit,et al.  Ray tracing mirages , 1990, IEEE Computer Graphics and Applications.

[42]  Alan Chalmers,et al.  Realistic visualisation of the Pompeii frescoes , 2001, AFRIGRAPH '01.

[43]  Yuri Ralchenko,et al.  NIST Atomic Spectra Database , 2000 .

[44]  Gautham Krishnamoorthy,et al.  Parallel Computations of Nongray Radiative Heat Transfer , 2005 .

[45]  Samuel W. Hasinoff,et al.  Three-Dimensional Reconstruction of Fire from Images , 2002 .

[46]  Janne Kontkanen,et al.  The Second Order Particle System , 2003, WSCG.

[47]  John Keyser,et al.  Interactive simulation of fire , 2002, 10th Pacific Conference on Computer Graphics and Applications, 2002. Proceedings..

[48]  Jos Stam,et al.  Ray Tracing in Non-Constant Media , 1996, Rendering Techniques.

[49]  Laurence S. Rothman,et al.  The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation) , 1998, Defense, Security, and Sensing.

[50]  Samuel William Hasino Three-Dimensional Reconstruction of Fire from Images , 2002 .

[51]  Donald P. Greenberg,et al.  Time-dependent visual adaptation for fast realistic image display , 2000, SIGGRAPH.

[52]  James F. O'Brien,et al.  Animating suspended particle explosions , 2003, ACM Trans. Graph..

[53]  D. L. Shirer Basic: the little language that wouldn't die , 2000 .

[54]  P. Ciddor Refractive index of air: new equations for the visible and near infrared. , 1996, Applied optics.

[55]  Werner Purgathofer,et al.  Tone Reproduction and Physically Based Spectral Rendering , 2002, Eurographics.