A precision tester for studies of holographic optical storage materials and recording physics.

The design and the realization of an advanced precision optical test stand for evaluating materials and developing tools and techniques for holographic digital data storage are described. This apparatus allows studies of holographic recording materials and recording physics to be performed in the context of practical data storage. The system concept, its implementation, and its performance are described, and examples of holographic storage in photorefractive materials are discussed.

[1]  Demetri Psaltis,et al.  Electrical fixing of photorefractive holograms in Sr0.75Ba0.25Nb2O6 , 1993 .

[2]  T. Tamir,et al.  Wave diffraction by many superposed volume gratings. , 1993, Applied Optics.

[3]  D. B. Fraser,et al.  HOLOGRAPHIC STORAGE IN LITHIUM NIOBATE , 1968 .

[4]  K. Blotekjaer Limitations on holographic storage capacity of photochromic and photorefractive media. , 1979, Applied optics.

[5]  Hirotsugu Kozuka,et al.  High‐sensitive holographic storage in Ce‐doped SBN , 1977 .

[6]  N. Peyghambarian,et al.  A photorefractive polymer with high optical gain and diffraction efficiency near 100% , 1994, Nature.

[7]  Marvin B. Klein,et al.  Optimal Properties Of Photorefractive Materials For Optical Data Processing , 1983, Photonics West - Lasers and Applications in Science and Engineering.

[8]  Twieg,et al.  Quasinondestructive readout in a photorefractive polymer. , 1994, Physical review letters.

[9]  L Hesselink,et al.  Volume Holographic Storage and Retrieval of Digital Data , 1994, Science.

[10]  G. D. Boyd,et al.  OPTICALLY‐INDUCED REFRACTIVE INDEX INHOMOGENEITIES IN LiNbO3 AND LiTaO3 , 1966 .

[11]  Alastair M. Glass,et al.  Control of the Susceptibility of Lithium Niobate to Laser‐Induced Refractive Index Changes , 1971 .

[12]  Erich Spitz,et al.  Holographic read-write memory and capacity enhancement by 3-D storage , 1973 .

[13]  F. Mok,et al.  Angle-multiplexed storage of 5000 holograms in lithium niobate. , 1993, Optics letters.

[14]  F. Micheron,et al.  Electrical Control of Fixation and Erasure of Holographic Patterns in Ferroelectric Materials , 1972 .

[15]  W. J. Burke,et al.  Multiple storage and erasure of fixed holograms in Fe−doped LiNbO3 , 1975 .

[16]  J. Lamacchia,et al.  Optically Induced Refractive Index Changes in BaTiO3 , 1970 .

[17]  A. Yariv,et al.  Photorefractive Properties Of Undoped, Cerium-Doped, And Iron-Doped Single-Crystal SrO.6BaO.4Nb2O6 , 1986 .

[18]  Theo T. Tschudi,et al.  Volume hologram multiplexing using a deterministic phase encoding method , 1991 .

[19]  D. Gabor A New Microscopic Principle , 1948, Nature.

[20]  J. J. Amodei,et al.  HOLOGRAPHIC PATTERN FIXING IN ELECTRO‐OPTIC CRYSTALS , 1971 .

[21]  M. Klein,et al.  Spectroscopic and photorefractive properties of infrared-sensitive rhodium-doped barium titanate. , 1994, Optics letters.

[22]  W. E. Moerner,et al.  POLYMERIC PHOTOREFRACTIVE MATERIALS , 1994 .

[23]  A Yariv,et al.  Optical data storage using orthogonal wavelength multiplexed volume holograms. , 1992, Optics letters.

[24]  Scott,et al.  Observation of the photorefractive effect in a polymer. , 1991, Physical review letters.

[25]  C. Burckhardt Use of a random phase mask for the recording of fourier transform holograms of data masks. , 1970, Applied optics.

[26]  Lambertus Hesselink,et al.  Optical memories implemented with photorefractive media , 1993 .

[27]  Demetri Psaltis,et al.  Angle and space multiplexed holographic storage using the 90° geometry , 1995 .

[28]  P. J. van Heerden,et al.  Theory of Optical Information Storage in Solids , 1963 .