Risk aggregation with dependence uncertainty

Risk aggregation with dependence uncertainty refers to the sum of individual risks with known marginal distributions and unspecified dependence structure. We introduce the admissible risk class to study risk aggregation with dependence uncertainty. The admissible risk class has some nice properties such as robustness, convexity, permutation invariance and affine invariance. We then derive a new convex ordering lower bound over this class and give a sufficient condition for this lower bound to be sharp in the case of identical marginal distributions. The results are used to identify extreme scenarios and calculate bounds on Value-at-Risk as well as on convex and coherent risk measures and other quantities of interest in finance and insurance. Numerical illustrations are provided for different settings and commonly-used distributions of risks.

[1]  Tai-Ho Wang,et al.  Static-arbitrage upper bounds for the prices of basket options , 2005 .

[2]  A. Müller Stochastic Orders Generated by Integrals: a Unified Study , 1997, Advances in Applied Probability.

[3]  A. Tchen Inequalities for distributions with given marginals , 1976 .

[4]  Steven Vanduffel,et al.  Measuring Portfolio Risk Under Partial Dependence Information , 2016 .

[5]  Ruodu Wang,et al.  Bounds for the sum of dependent risks and worst Value-at-Risk with monotone marginal densities , 2013, Finance Stochastics.

[6]  Jan Dhaene,et al.  Risk Measures and Comonotonicity: A Review , 2006, Stochastic Models.

[7]  Ludger Rüschendorf,et al.  Variance Minimization and Random Variables with Constant Sum , 2002 .

[8]  Ludger Rüschendorf,et al.  Inequalities for the expectation of Δ-monotone functions , 1980 .

[9]  H. Föllmer,et al.  Convex Risk Measures , 2010 .

[10]  Alexander Schied,et al.  Coherent and convex risk measures , 2010 .

[11]  Giovanni Puccetti,et al.  Sharp bounds on the expected shortfall for a sum of dependent random variables , 2013 .

[12]  Carole Bernard,et al.  Bounds on Capital Requirements for Bivariate Risk with Given Marginals and Partial Information on the Dependence , 2013 .

[13]  Harry H. Panjer,et al.  Operational Risk : Modeling Analytics , 2006 .

[14]  Jan Dhaene,et al.  The Herd Behavior Index: A New Measure for the Implied Degree of Co-Movement in Stock Markets , 2012 .

[15]  Steven Vanduffel,et al.  Bounds and Approximations for Sums of Dependent Log-Elliptical Random Variables , 2008 .

[16]  RISK MEASURES FOR NON‐INTEGRABLE RANDOM VARIABLES , 2009 .

[17]  Philippe Artzner,et al.  Coherent Measures of Risk , 1999 .

[18]  Giovanni Puccetti,et al.  Asymptotic equivalence of conservative VaR- and ES-based capital charges , 2013 .

[19]  S. Vanduffel,et al.  A New Approach to Assessing Model Risk in High Dimensions , 2015 .

[20]  Philipp J. Schönbucher,et al.  Advances in Finance and Stochastics , 2002 .

[21]  Ludger Rüschendorf,et al.  Value-at-Risk Bounds with Variance Constraints , 2015 .

[22]  A. Müller Stop-loss order for portfolios of dependent risks , 1997 .

[23]  Paul Embrechts,et al.  Bounds for Functions of Dependent Risks , 2006, Finance Stochastics.

[24]  Marc Goovaerts,et al.  Upper and Lower Bounds for Sums of Random Variables. , 2000 .

[25]  Martin Knott,et al.  Choosing joint distributions so that the variance of the sum is small , 2006 .

[26]  Rama Cont Model Uncertainty and its Impact on the Pricing of Derivative Instruments , 2004 .

[27]  S. Vanduffel,et al.  Bounds for sums of random variables when the marginal distributions and the variance of the sum are given , 2013 .

[28]  Ludger Rüschendorf,et al.  Computation of sharp bounds on the distribution of a function of dependent risks , 2012, J. Comput. Appl. Math..

[29]  Gregor Svindland,et al.  Convex Risk Measures Beyond Bounded Risks , 2008 .

[30]  F. Delbaen Coherent Risk Measures on General Probability Spaces , 2002 .

[31]  P. Embrechts,et al.  Model Uncertainty and VaR Aggregation , 2013 .

[32]  Changsong Deng,et al.  Statistics and Probability Letters , 2011 .

[33]  Bin Wang,et al.  The complete mixability and convex minimization problems with monotone marginal densities , 2011, J. Multivar. Anal..

[34]  Paul Embrechts,et al.  Using copulae to bound the Value-at-Risk for functions of dependent risks , 2003, Finance Stochastics.

[35]  Carole Bernard,et al.  Note on 'Improved Frechet Bounds and Model-Free Pricing of Multi-Asset Options' by Tankov (2011) , 2012 .

[36]  Ludger Rüschendorf,et al.  Mathematical Risk Analysis: Dependence, Risk Bounds, Optimal Allocations and Portfolios , 2013 .

[37]  C. Genest,et al.  Stochastic bounds on sums of dependent risks , 1999 .

[38]  R. Nelsen,et al.  Worst VaR scenarios with given marginals and measures of association , 2009 .

[39]  P. Embrechts,et al.  Risk Aggregation , 2009 .

[40]  Bin Wang,et al.  Extreme negative dependence and risk aggregation , 2015, J. Multivar. Anal..

[41]  Jan Dhaene,et al.  The Concept of Comonotonicity in Actuarial Science and Finance: Theory , 2002, Insurance: Mathematics and Economics.

[42]  Alexander Schied,et al.  Convex measures of risk and trading constraints , 2002, Finance Stochastics.

[43]  S. Kusuoka On law invariant coherent risk measures , 2001 .

[44]  N. Bäuerle,et al.  Stochastic Orders and Risk Measures: Consistency and Bounds , 2006 .

[45]  Wim Schoutens,et al.  General Lower Bounds for Arithmetic Asian Option Prices , 2008 .

[46]  Isaac Meilijson,et al.  Convex majorization with an application to the length of critical paths , 1979, Journal of Applied Probability.

[47]  Ruodu Wang,et al.  Complete mixability and asymptotic equivalence of worst-possible VaR and ES estimates , 2013 .

[48]  Ludger Rüschendorf,et al.  On convex risk measures on Lp-spaces , 2009, Math. Methods Oper. Res..

[49]  Peter Tankov,et al.  Improved Fréchet Bounds and Model-Free Pricing of Multi-Asset Options , 2011, Journal of Applied Probability.

[50]  Christine M. Anderson-Cook,et al.  Book review: quantitative risk management: concepts, techniques and tools, revised edition, by A.F. McNeil, R. Frey and P. Embrechts. Princeton University Press, 2015, ISBN 978-0-691-16627-8, xix + 700 pp. , 2017, Extremes.

[51]  Alexandre d'Aspremont,et al.  Static arbitrage bounds on basket option prices , 2006, Math. Program..

[52]  Ludger Rüschendorf,et al.  Solution of a statistical optimization problem by rearrangement methods , 1983 .

[53]  L. Rogers,et al.  The value of an Asian option , 1995, Journal of Applied Probability.

[54]  Martin Keller-Ressel,et al.  Convex Order of Discrete, Continuous, and Predictable Quadratic Variation and Applications to Options on Variance , 2011, SIAM J. Financial Math..

[55]  L. Rüschendorf Random variables with maximum sums , 1982, Advances in Applied Probability.

[56]  Bin Wang,et al.  Advances in Complete Mixability , 2012, J. Appl. Probab..