Computational methodologies and physical insights into electronic energy transfer in photosynthetic light-harvesting complexes.

We examine computational techniques and methodologies currently in use to explore electronic excitation energy transfer in the context of light-harvesting complexes in photosynthetic antenna systems, and comment on some new insights into the underlying physics. Advantages and pitfalls of these methodologies are discussed, as are some physical insights into the photosynthetic dynamics. By combining results from molecular modelling of the complexes (structural description) with an effective non-equilibrium statistical description (time evolution), we identify some general features, regardless of the particular distribution in the protein scaffold, that are central to light-harvesting dynamics and, that could ultimately be related to the high efficiency of the overall process. Based on these general common features, some possible new directions in the field are discussed.

[1]  M. Shapiro,et al.  Femtosecond dynamics and laser control of charge transport in trans-polyacetylene. , 2008, The Journal of chemical physics.

[2]  D. Coker,et al.  Iterative linearized approach to nonadiabatic dynamics. , 2008, The Journal of chemical physics.

[3]  T. Arimitsu,et al.  Expansion Formulas in Nonequilibrium Statistical Mechanics , 1980 .

[4]  M. Thorwart,et al.  Coherent control of an effective two-level system in a non-Markovian biomolecular environment , 2009, 0903.2936.

[5]  Jyrki Piilo,et al.  Measure for the degree of non-markovian behavior of quantum processes in open systems. , 2009, Physical review letters.

[6]  David Zueco,et al.  Bringing entanglement to the high temperature limit. , 2010, Physical review letters.

[7]  Johannes Neugebauer,et al.  Quantum chemical description of absorption properties and excited-state processes in photosynthetic systems. , 2012, Chemphyschem : a European journal of chemical physics and physical chemistry.

[8]  Maximilian Schlosshauer-Selbach Decoherence and the quantum-to-classical transition , 2008 .

[9]  B. Rabenstein,et al.  α-Helices direct excitation energy flow in the Fenna–Matthews–Olson protein , 2007, Proceedings of the National Academy of Sciences.

[10]  Gert-Ludwig Ingold,et al.  Quantum Brownian motion: The functional integral approach , 1988 .

[11]  D. Coker,et al.  Iterative linearized density matrix propagation for modeling coherent excitation energy transfer in photosynthetic light harvesting. , 2010, The Journal of chemical physics.

[12]  Emma Springate,et al.  Instantaneous mapping of coherently coupled electronic transitions and energy transfers in a photosynthetic complex using angle-resolved coherent optical wave-mixing. , 2009, Physical review letters.

[13]  Klaus Schulten,et al.  The effect of correlated bath fluctuations on exciton transfer. , 2011, The Journal of chemical physics.

[14]  D. Coker,et al.  Linearized path integral approach for calculating nonadiabatic time correlation functions. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[15]  T. Mančal,et al.  Vibronic modulation of lineshapes in two-dimensional electronic spectra , 2008 .

[16]  Susana F Huelga,et al.  Entanglement and non-markovianity of quantum evolutions. , 2009, Physical review letters.

[17]  N. Makri,et al.  TENSOR PROPAGATOR FOR ITERATIVE QUANTUM TIME EVOLUTION OF REDUCED DENSITY MATRICES. I: THEORY , 1995 .

[18]  K. B. Whaley,et al.  Limits of quantum speedup in photosynthetic light harvesting , 2009, 0910.1847.

[19]  M. Shapiro,et al.  Molecular response in one-photon absorption via natural thermal light vs. pulsed laser excitation , 2011, Proceedings of the National Academy of Sciences.

[20]  P. Curmi,et al.  Ultrafast light harvesting dynamics in the cryptophyte phycocyanin 645 , 2007, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[21]  Francesco Petruccione,et al.  The Theory of Open Quantum Systems , 2002 .

[22]  Volkhard May,et al.  Charge and Energy Transfer Dynamics in Molecular Systems, 2nd, Revised and Enlarged Edition , 2004 .

[23]  D. Braun,et al.  Exciton transfer dynamics and quantumness of energy transfer in the Fenna-Matthews-Olson complex. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  Ford,et al.  Quantum oscillator in a blackbody radiation field. , 1985, Physical review letters.

[25]  Jianshu Cao,et al.  A phase-space study of Bloch–Redfield theory , 1997 .

[26]  Robert Zwanzig,et al.  Memory Effects in Irreversible Thermodynamics , 1961 .

[27]  Ting Yu,et al.  Non-Markovian quantum state diffusion: Perturbation approach , 1999, quant-ph/9902043.

[28]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[29]  James Barber,et al.  Comparing Photosynthetic and Photovoltaic Efficiencies and Recognizing the Potential for Improvement , 2011, Science.

[30]  Jeremy M Moix,et al.  Efficient energy transfer in light-harvesting systems, III: The influence of the eighth bacteriochlorophyll on the dynamics and efficiency in FMO , 2011, 1109.3416.

[31]  D. Wiersma,et al.  Optical dynamics of excitons in J aggregates of a carbocyanine dye , 1995 .

[32]  P. Rossky,et al.  An analysis of electronic dephasing in the spin-boson model. , 2004, The Journal of chemical physics.

[33]  W. Miller,et al.  Semiclassical Description of Electronic Excitation Population Transfer in a Model Photosynthetic System , 2010 .

[34]  J. Gilmore,et al.  Spin boson models for quantum decoherence of electronic excitations of biomolecules and quantum dots in a solvent , 2004, cond-mat/0401444.

[35]  P. Talkner,et al.  Quantum theory of the damped harmonic oscillator , 1984 .

[36]  T. Mančal,et al.  Exciton dynamics in photosynthetic complexes: excitation by coherent and incoherent light , 2010, 1002.0954.

[37]  R. Silbey,et al.  Efficient energy transfer in light-harvesting systems: quantum-classical comparison, flux network, and robustness analysis. , 2011, The Journal of chemical physics.

[38]  Joel Gilmore,et al.  Criteria for quantum coherent transfer of excitations between chromophores in a polar solvent , 2004, quant-ph/0412170.

[39]  A. Olaya-Castro,et al.  Quantum State Tuning of Energy Transfer in a Correlated Environment , 2009, 0907.5183.

[40]  Density-matrix renormalization-group study of excitons in dendrimers , 2000, cond-mat/0012382.

[41]  Weiss,et al.  Dynamics of the biased two-level system in metals. , 1989, Physical review letters.

[42]  A. Leggett,et al.  Path integral approach to quantum Brownian motion , 1983 .

[43]  K. Hoki,et al.  Excitation of Biomolecules by Coherent vs. Incoherent Light: Model Rhodopsin Photoisomerization , 2011 .

[44]  R. Silbey,et al.  Efficient energy transfer in light-harvesting systems, I: optimal temperature, reorganization energy and spatial–temporal correlations , 2010, 1008.2236.

[45]  Graham R. Fleming,et al.  CHROMOPHORE-SOLVENT DYNAMICS , 1996 .

[46]  Klaus Schulten,et al.  Excitons in a photosynthetic light-harvesting system: a combined molecular dynamics, quantum chemistry, and polaron model study. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[47]  Gregory D. Scholes,et al.  Energy transfer from Förster–Dexter theory to quantum coherent light-harvesting , 2011 .

[48]  Tõnu Pullerits,et al.  Origin of Long-Lived Coherences in Light-Harvesting Complexes , 2012, The journal of physical chemistry. B.

[49]  L. Bewilogua,et al.  Condensed Rare Gases , 1968 .

[50]  T. Dittrich,et al.  Time-domain scars: resolving the spectral form factor in phase space. , 2008, Physical review letters.

[51]  L. Vandersypen,et al.  Spins in few-electron quantum dots , 2006, cond-mat/0610433.

[52]  P. Brumer,et al.  Electronic coherence dynamics in trans-polyacetylene oligomers. , 2011, The Journal of chemical physics.

[53]  Hermann Grabert,et al.  Exact c-number representation of non-Markovian quantum dissipation. , 2002, Physical review letters.

[54]  D. Coker,et al.  Influence of environment induced correlated fluctuations in electronic coupling on coherent excitation energy transfer dynamics in model photosynthetic systems. , 2012, The Journal of chemical physics.

[55]  A. Aspuru‐Guzik,et al.  Absence of Quantum Oscillations and Dependence on Site Energies in Electronic Excitation Transfer in the Fenna–Matthews–Olson Trimer , 2011, 1108.3452.

[56]  J. Kongsted,et al.  Electronic Energy Transfer in Condensed Phase Studied by a Polarizable QM/MM Model. , 2009, Journal of chemical theory and computation.

[57]  John H. Reina,et al.  Galactic Dynamics , 1995 .

[58]  P. Rebentrost,et al.  Atomistic study of the long-lived quantum coherences in the Fenna-Matthews-Olson complex. , 2011, Biophysical journal.

[59]  Masoud Mohseni,et al.  Environment-assisted quantum transport , 2008, 0807.0929.

[60]  M. Shapiro,et al.  Quantum Control of Molecular Processes , 2012 .

[61]  K. B. Whaley,et al.  Spatial propagation of excitonic coherence enables ratcheted energy transfer. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[62]  Javier Prior,et al.  Efficient simulation of strong system-environment interactions. , 2010, Physical review letters.

[63]  R. Silbey,et al.  Markovian approximation in the relaxation of open quantum systems. , 2005, The journal of physical chemistry. B.

[64]  Alexander Eisfeld,et al.  Equivalence of quantum and classical coherence in electronic energy transfer. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[65]  Graham R. Fleming,et al.  Iterative path-integral algorithm versus cumulant time-nonlocal master equation approach for dissipative biomolecular exciton transport , 2011 .

[66]  R. van Grondelle,et al.  Physical origins and models of energy transfer in photosynthetic light-harvesting. , 2010, Physical chemistry chemical physics : PCCP.

[67]  T. Renger,et al.  How proteins trigger excitation energy transfer in the FMO complex of green sulfur bacteria. , 2006, Biophysical journal.

[68]  Th. Förster Zwischenmolekulare Energiewanderung und Fluoreszenz , 1948 .

[69]  Daniel B. Turner,et al.  Quantitative investigations of quantum coherence for a light-harvesting protein at conditions simulating photosynthesis. , 2012, Physical chemistry chemical physics : PCCP.

[70]  Ford,et al.  On the quantum langevin equation , 1981, Physical review. A, General physics.

[71]  M. B. Plenio,et al.  Dephasing-assisted transport: quantum networks and biomolecules , 2008, 0807.4902.

[72]  Qiang Shi,et al.  Theoretical study of the electronic-vibrational coupling in the Q(y) states of the photosynthetic reaction center in purple bacteria. , 2012, The journal of physical chemistry. B.

[73]  Paul Brumer,et al.  Incoherent excitation of thermally equilibrated open quantum systems , 2012, 1210.6374.

[74]  K. Schulten,et al.  Quest for spatially correlated fluctuations in the FMO light-harvesting complex. , 2011, The journal of physical chemistry. B.

[75]  Gregory D. Scholes,et al.  Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature , 2010, Nature.

[76]  Tõnu Pullerits,et al.  Photosynthetic light-harvesting: Reconciling dynamics and structure of purple bacterial LH2 reveals function of photosynthetic unit , 1999 .

[77]  H. Grabert,et al.  Projection Operator Techniques in Nonequilibrium Statistical Mechanics , 1982 .

[78]  Jacob M. Taylor,et al.  Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots , 2005, Science.

[79]  S. Huelga,et al.  Electronic coherence and recoherence in pigment protein complexes: The fundamental role of non-equilibrium vibrational structures , 2014 .

[80]  K. Schulten,et al.  Theory and Simulation of the Environmental Effects on FMO Electronic Transitions. , 2011, The journal of physical chemistry letters.

[81]  Andreas Buchleitner,et al.  Coherent Evolution in Noisy Environments , 2002 .

[82]  G. Schatz The journal of physical chemistry letters , 2009 .

[83]  A. Szöke,et al.  Electronic Energy Transfer Phenomena in Rare Gases , 1972 .

[84]  William H. Miller,et al.  Self-consistent hybrid approach for complex systems: Application to the spin-boson model with Debye spectral density , 2001 .

[85]  Graham R. Fleming,et al.  Two-dimensional electronic spectroscopy and photosynthesis: Fundamentals and applications to photosynthetic light-harvesting , 2011 .

[86]  Jeremy M Moix,et al.  Equilibrium-reduced density matrix formulation: Influence of noise, disorder, and temperature on localization in excitonic systems , 2012, 1202.4705.

[87]  T. Renger,et al.  The Eighth Bacteriochlorophyll Completes the Excitation Energy Funnel in the FMO Protein. , 2011, The journal of physical chemistry letters.

[88]  Hohjai Lee,et al.  Coherence Dynamics in Photosynthesis: Protein Protection of Excitonic Coherence , 2007, Science.

[89]  G. Fleming,et al.  Quantum coherence and its interplay with protein environments in photosynthetic electronic energy transfer. , 2010, Physical chemistry chemical physics : PCCP.

[90]  R. Zwanzig Ensemble Method in the Theory of Irreversibility , 1960 .

[91]  Neil F. Johnson,et al.  Efficiency of energy transfer in a light-harvesting system under quantum coherence , 2007, 0708.1159.

[92]  P. Rossky,et al.  Evaluation of quantum transition rates from quantum-classical molecular dynamics simulations , 1997 .

[93]  Thomas Renger,et al.  Ultrafast excitation energy transfer dynamics in photosynthetic pigment–protein complexes , 2001 .

[94]  Andrzej Kossakowski,et al.  Properties of Quantum Markovian Master Equations , 1978 .

[95]  T. Dittrich,et al.  Nonclassical phase-space trajectories for the damped harmonic quantum oscillator , 2010, 1005.3839.

[96]  Alfred G. Redfield,et al.  On the Theory of Relaxation Processes , 1957, IBM J. Res. Dev..

[97]  M. Ratner Bridge-assisted electron transfer: effective electronic coupling , 1990 .

[98]  W. Miller,et al.  A classical analog for electronic degrees of freedom in nonadiabatic collision processes , 1979 .

[99]  V. Vedral Quantum physics: Hot entanglement , 2010, Nature.

[100]  A. Nazir Correlation-dependent coherent to incoherent transitions in resonant energy transfer dynamics. , 2009, Physical review letters.

[101]  Justin R Caram,et al.  Long-lived quantum coherence in photosynthetic complexes at physiological temperature , 2010, Proceedings of the National Academy of Sciences.

[102]  Dekker Noninteracting-blip approximation for a two-level system coupled to a heat bath. , 1987, Physical review. A, General physics.

[103]  Caldeira,et al.  Quantum mechanics of radiation damping. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[104]  P. Brumer,et al.  Electronic energy transfer in model photosynthetic systems: Markovian vs. non-Markovian dynamics. , 2011, Faraday discussions.

[105]  R. Xu,et al.  Theory of open quantum systems , 2002 .

[106]  D. Coker,et al.  LAND-map, a linearized approach to nonadiabatic dynamics using the mapping formalism. , 2005, The Journal of chemical physics.

[107]  G. Scholes Quantum-Coherent Electronic Energy Transfer: Did Nature Think of It First? , 2010 .

[108]  J. Gilmore,et al.  Quantum dynamics of electronic excitations in biomolecular chromophores: role of the protein environment and solvent. , 2006, Journal of Physical Chemistry A.

[109]  S. Nakajima On Quantum Theory of Transport Phenomena Steady Diffusion , 1958 .

[110]  S. Mukamel Principles of Nonlinear Optical Spectroscopy , 1995 .

[111]  C. Aslangul,et al.  Spin-boson systems: equivalence between the dilute-blip and the Born approximations , 1986 .

[112]  G. Scholes,et al.  Energy transfer in light-harvesting complexes LHCII and CP29 of spinach studied with three pulse echo peak shift and transient grating. , 2003, Biophysical journal.

[113]  Jacopo Tomasi,et al.  How solvent controls electronic energy transfer and light harvesting. , 2007, The journal of physical chemistry. B.

[114]  Graham R Fleming,et al.  Dynamics of light harvesting in photosynthesis. , 2009, Annual review of physical chemistry.

[115]  Benedetta Mennucci,et al.  The role of the environment in electronic energy transfer: a molecular modeling perspective. , 2011, Physical chemistry chemical physics : PCCP.

[116]  G. W. Ford,et al.  Radiating electron: Fluctuations without dissipation in the equation of motion , 1998 .

[117]  G. Fleming,et al.  Theoretical examination of quantum coherence in a photosynthetic system at physiological temperature , 2009, Proceedings of the National Academy of Sciences.

[118]  Gerhard Stock,et al.  Mapping approach to the semiclassical description of nonadiabatic quantum dynamics , 1999 .

[119]  J. Kongsted,et al.  Photosynthetic light-harvesting is tuned by the heterogeneous polarizable environment of the protein. , 2011, Journal of the American Chemical Society.

[120]  D. Tronrud,et al.  The structural basis for the difference in absorbance spectra for the FMO antenna protein from various green sulfur bacteria , 2009, Photosynthesis Research.

[121]  D. Coker,et al.  Communication: Partial linearized density matrix dynamics for dissipative, non-adiabatic quantum evolution. , 2011, The Journal of chemical physics.

[122]  P. Rossky,et al.  Electronic Decoherence Induced by Intramolecular Vibrational Motions in a Betaine Dye Molecule , 2004 .

[123]  Seogjoo J. Jang,et al.  Multichromophoric Förster resonance energy transfer. , 2004, Physical review letters.

[124]  E. Koch,et al.  Electronic Excitations in Condensed Rare Gases , 1985 .

[125]  A. Leggett,et al.  Dynamics of the dissipative two-state system , 1987 .

[126]  U. Kleinekathöfer,et al.  Time-dependent atomistic view on the electronic relaxation in light-harvesting system II. , 2010, The journal of physical chemistry. B.

[127]  N. Makri,et al.  Tensor propagator for iterative quantum time evolution of reduced density matrices. II. Numerical methodology , 1995 .

[128]  M. Thoss,et al.  Semiclassical Description of Nonadiabatic Quantum Dynamics , 1997 .

[129]  P. Brumer,et al.  Decoherence in an anharmonic oscillator coupled to a thermal environment: a semiclassical forward-backward approach. , 2004, The Journal of chemical physics.

[130]  G. Fleming,et al.  Unified treatment of quantum coherent and incoherent hopping dynamics in electronic energy transfer: reduced hierarchy equation approach. , 2009, The Journal of chemical physics.

[131]  P. Rossky,et al.  RELATIONSHIP BETWEEN QUANTUM DECOHERENCE TIMES AND SOLVATION DYNAMICS IN CONDENSED PHASE CHEMICAL SYSTEMS , 1998, quant-ph/9804004.

[132]  D. Coker,et al.  Theoretical Study of Coherent Excitation Energy Transfer in Cryptophyte Phycocyanin 645 at Physiological Temperature , 2011 .

[133]  J. Eckel,et al.  Quantum coherent biomolecular energy transfer with spatially correlated fluctuations , 2010, 1003.3857.

[134]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[135]  K. Hoki,et al.  Dissipation effects on laser control of cis/trans isomerization , 2009 .

[136]  Bradley F. Habenicht,et al.  Ab initio study of vibrational dephasing of electronic excitations in semiconducting carbon nanotubes. , 2007, Nano letters (Print).

[137]  W. Strunz,et al.  An efficient method to calculate excitation energy transfer in light-harvesting systems: application to the Fenna–Matthews–Olson complex , 2011, 1106.5259.

[138]  J. Tomasi,et al.  Quantum mechanical continuum solvation models. , 2005, Chemical reviews.

[139]  Paul Brumer,et al.  Physical Basis for Long-Lived Electronic Coherence in Photosynthetic Light-Harvesting Systems , 2011, 1107.0322.

[140]  S. Kais,et al.  Modified scaled hierarchical equation of motion approach for the study of quantum coherence in photosynthetic complexes. , 2010, The journal of physical chemistry. B.

[141]  P. Lugol Annalen der Physik , 1906 .

[142]  T. Dittrich,et al.  Semiclassical propagation of Wigner functions. , 2009, The Journal of chemical physics.

[143]  Hermann Haken,et al.  An exactly solvable model for coherent and incoherent exciton motion , 1973 .

[144]  Reibold,et al.  Strong damping and low-temperature anomalies for the harmonic oscillator. , 1985, Physical review. A, General physics.

[145]  P. Brumer,et al.  Creation and dynamics of molecular states prepared with coherent vs partially coherent pulsed light , 1991 .

[146]  U. Weiss Quantum Dissipative Systems , 1993 .

[147]  T. Mančal,et al.  Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems , 2007, Nature.