UvA-DARE (Digital Academic Repository) Selective Search for Object Recognition Selective Search for Object Recognition

This paper addresses the problem of generating possible object locations for use in object recognition. We introduce Selective Search which combines the strength of both an exhaustive search and segmentation. Like segmentation, we use the image structure to guide our sampling process. Like exhaustive search, we aim to capture all possible object locations. Instead of a single technique to generate possible object locations, we diversify our search and use a variety of complementary image partitionings to deal with as many image conditions as possible. Our Selective Search results in a small set of data-driven, class-independent, high quality locations, yielding 99% recall and a Mean Average Best Overlap of 0.879 at 10,097 locations. The reduced number of locations compared to an exhaustive search enables the use of stronger machine learning techniques and stronger appearance models for object recognition. In this paper we show that our selective search enables the use of the powerful Bag-of-Words model for recognition. The Selective Search software is made publicly available .

[1]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[2]  Arnold W. M. Smeulders,et al.  Color Invariance , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Paul A. Viola,et al.  Robust Real-Time Face Detection , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[4]  Paul A. Viola,et al.  Rapid object detection using a boosted cascade of simple features , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[5]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Andrew Zisserman,et al.  Video Google: a text retrieval approach to object matching in videos , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[8]  Zhuowen Tu,et al.  Image Parsing: Unifying Segmentation, Detection, and Recognition , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[9]  Daniel P. Huttenlocher,et al.  Efficient Graph-Based Image Segmentation , 2004, International Journal of Computer Vision.

[10]  Gabriela Csurka,et al.  Visual categorization with bags of keypoints , 2002, eccv 2004.

[11]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[12]  Cordelia Schmid,et al.  Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[13]  Andrew Zisserman,et al.  An Exemplar Model for Learning Object Classes , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[14]  Subhransu Maji,et al.  Classification using intersection kernel support vector machines is efficient , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[15]  Pablo Arbeláez,et al.  Recognition using regions , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[16]  Cordelia Schmid,et al.  Combining efficient object localization and image classification , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[17]  Christoph H. Lampert,et al.  Efficient Subwindow Search: A Branch and Bound Framework for Object Localization , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Luc Van Gool,et al.  The Pascal Visual Object Classes (VOC) Challenge , 2010, International Journal of Computer Vision.

[19]  Andrew Zisserman,et al.  Multiple kernels for object detection , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[20]  Jitendra Malik,et al.  Object detection using a max-margin Hough transform , 2009, CVPR.

[21]  David A. McAllester,et al.  Object Detection with Discriminatively Trained Part Based Models , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  Arnold W. M. Smeulders,et al.  Real-Time Visual Concept Classification , 2010, IEEE Transactions on Multimedia.

[23]  William T. Freeman,et al.  Latent hierarchical structural learning for object detection , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[24]  Koen E. A. van de Sande,et al.  Evaluating Color Descriptors for Object and Scene Recognition , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  Thomas Deselaers,et al.  What is an object? , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[26]  Thomas Mensink,et al.  Improving the Fisher Kernel for Large-Scale Image Classification , 2010, ECCV.

[27]  Cristian Sminchisescu,et al.  Constrained parametric min-cuts for automatic object segmentation , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[28]  Thomas S. Huang,et al.  Image Classification Using Super-Vector Coding of Local Image Descriptors , 2010, ECCV.

[29]  Cristian Sminchisescu,et al.  Object recognition as ranking holistic figure-ground hypotheses , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[30]  Edward H. Adelson,et al.  Exploring features in a Bayesian framework for material recognition , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[31]  Gunnar Rätsch,et al.  The SHOGUN Machine Learning Toolbox , 2010, J. Mach. Learn. Res..

[32]  Derek Hoiem,et al.  Category Independent Object Proposals , 2010, ECCV.

[33]  Charless C. Fowlkes,et al.  Contour Detection and Hierarchical Image Segmentation , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[34]  Koen E. A. van de Sande,et al.  Empowering Visual Categorization With the GPU , 2011, IEEE Transactions on Multimedia.

[35]  Illumination-Invariant Descriptors for Discriminative Visual Object Categorization∗ , 2011 .

[36]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[37]  Thomas Deselaers,et al.  Measuring the Objectness of Image Windows , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.