Influence of Thiazole-modified Carbon Nitride Nanosheets with Feasible Electronic Properties on Inverted Perovskite Solar Cells.

Effective, solution processable designs of interfacial electron transporting layers (ETLs) or hole-blocking layers are promising tools in modern electronic devices, e.g. to improve performance, cost and stability of perovskite-based solar cells. Herein, we introduce a facile synthetic route of thiazole-modified carbon nitride with 1.5 nm thick nanosheets which can be processed to a homogeneous, metal-free ETL for inverted perovskite solar cells. We show that thiazole-modified carbon nitride enables electronic interface enhancement via suppression of charge recombination, achieving 1.09 V in Voc and a rise to 20.17 mA/cm2 in Jsc. Hence, this report presents the successful implementation of a carbon nitride-based structure to boost charge extraction from the perovskite absorber towards the electron transport layer in p-i-n devices.

[1]  Lei Jiang,et al.  A biomimetic nanofluidic diode based on surface-modified polymeric carbon nitride nanotubes , 2019, Beilstein journal of nanotechnology.

[2]  B. Puértolas,et al.  Sustainable Continuous Flow Valorization of γ-Valerolactone with Trioxane to α-Methylene-γ-Valerolactone over Basic Beta Zeolites. , 2019, ChemSusChem.

[3]  M. Antonietti,et al.  Robust Carbon Nitride-Based Thermoset Coatings for Surface Modification and Photochemistry , 2019, ACS applied materials & interfaces.

[4]  C. Brabec,et al.  Assembling Mesoscale‐Structured Organic Interfaces in Perovskite Photovoltaics , 2019, Advanced materials.

[5]  K. Blank,et al.  Extremely Compressible Hydrogel via Incorporation of Modified Graphitic Carbon Nitride. , 2018, Macromolecular rapid communications.

[6]  M. Antonietti,et al.  Electrostatic Stabilization of Carbon Nitride Colloids in Organic Solvents Enables Stable Dispersions and Transparent Homogeneous CN Films for Optoelectronics. , 2018, Journal of the American Chemical Society.

[7]  C. Brabec,et al.  Resolving a Critical Instability in Perovskite Solar Cells by Designing a Scalable and Printable Carbon Based Electrode‐Interface Architecture , 2018, Advanced Energy Materials.

[8]  T. Buonassisi,et al.  State‐of‐the‐Art Electron‐Selective Contacts in Perovskite Solar Cells , 2018, Advanced Materials Interfaces.

[9]  Xinchen Wang,et al.  Synthesis of Polymeric Carbon Nitride Films with Adhesive Interfaces for Solar Water Splitting Devices , 2018, ACS Catalysis.

[10]  M. Antonietti,et al.  Photocatalytic cyanation of carbon nitride scaffolds: Tuning band structure and enhancing the performance in green light driven C S bond formation , 2018, Applied Catalysis B: Environmental.

[11]  T. Unold,et al.  Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells , 2018, Nature Energy.

[12]  L. Echegoyen,et al.  Progress in fullerene-based hybrid perovskite solar cells , 2018 .

[13]  Eli Yablonovitch,et al.  Fundamental Efficiency Limit of Lead Iodide Perovskite Solar Cells , 2018, 2018 Conference on Lasers and Electro-Optics (CLEO).

[14]  M. Antonietti,et al.  Carbon nitride creates thioamides in high yields by the photocatalytic Kindler reaction , 2018 .

[15]  Shinuk Cho,et al.  Highly efficient and stable inverted perovskite solar cell employing PEDOT:GO composite layer as a hole transport layer , 2018, Scientific Reports.

[16]  Christopher J. Traverse,et al.  Impact of Ultrathin C60 on Perovskite Photovoltaic Devices. , 2018, ACS nano.

[17]  钟凯伦,et al.  CH 3 NH 3 PbI 3 薄膜中放大自发辐射效应的研究 , 2018 .

[18]  M. Antonietti,et al.  Optimizing Optical Absorption, Exciton Dissociation, and Charge Transfer of a Polymeric Carbon Nitride with Ultrahigh Solar Hydrogen Production Activity. , 2017, Angewandte Chemie.

[19]  M. Antonietti,et al.  Enhanced Dispersibility of Graphitic Carbon Nitride Particles in Aqueous and Organic Media via a One-Pot Grafting Approach. , 2017, Langmuir : the ACS journal of surfaces and colloids.

[20]  Dong Uk Lee,et al.  Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells , 2017, Science.

[21]  M. Antonietti,et al.  Advancing the n → π* electron transition of carbon nitride nanotubes for H2 photosynthesis , 2017 .

[22]  Bo Chen,et al.  Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations , 2017, Nature Energy.

[23]  Ilke Celik,et al.  A technoeconomic analysis of perovskite solar module manufacturing with low-cost materials and techniques , 2017 .

[24]  Minglei Cao,et al.  A new strategy of preparing uniform graphitic carbon nitride films for photoelectrochemical application , 2017 .

[25]  Mohammad Khaja Nazeeruddin,et al.  One-Year stable perovskite solar cells by 2D/3D interface engineering , 2017, Nature Communications.

[26]  N. Koch,et al.  Reduced Interface‐Mediated Recombination for High Open‐Circuit Voltages in CH3NH3PbI3 Solar Cells , 2017, Advanced materials.

[27]  Anders Hagfeldt,et al.  Identifying and suppressing interfacial recombination to achieve high open-circuit voltage in perovskite solar cells , 2017 .

[28]  M. Antonietti,et al.  Reinforced Hydrogels via Carbon Nitride Initiated Polymerization , 2017 .

[29]  L. Quan,et al.  SOLAR CELLS: Efficient and stable solution‐processed planar perovskite solar cells via contact passivation , 2017 .

[30]  Dong Hoe Kim,et al.  Do grain boundaries dominate non-radiative recombination in CH3NH3PbI3 perovskite thin films? , 2017, Physical chemistry chemical physics : PCCP.

[31]  Henk J. Bolink,et al.  Removing Leakage and Surface Recombination in Planar Perovskite Solar Cells , 2017 .

[32]  Shijian Chen,et al.  Fabrication and high visible-light-driven photocurrent response of g-C 3 N 4 film: The role of thiourea , 2016 .

[33]  Anders Hagfeldt,et al.  Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide , 2016 .

[34]  Masuki Kawamoto,et al.  An autonomous actuator driven by fluctuations in ambient humidity. , 2016, Nature materials.

[35]  A. Jen,et al.  Enhanced Efficiency and Stability of Inverted Perovskite Solar Cells Using Highly Crystalline SnO2 Nanocrystals as the Robust Electron‐Transporting Layer , 2016, Advanced materials.

[36]  Jong-Kwon Lee,et al.  Hysteresis-free low-temperature-processed planar perovskite solar cells with 19.1% efficiency , 2016 .

[37]  C. Brabec,et al.  Overcoming the Interface Losses in Planar Heterojunction Perovskite‐Based Solar Cells , 2016, Advanced materials.

[38]  Weizhen Yu,et al.  Ultrathin two-dimensional graphitic carbon nitride as a solution-processed cathode interfacial layer for inverted polymer solar cells , 2016 .

[39]  Yongbo Yuan,et al.  Correlation of energy disorder and open-circuit voltage in hybrid perovskite solar cells , 2016, Nature Energy.

[40]  Michael Grätzel,et al.  Highly efficient planar perovskite solar cells through band alignment engineering , 2015 .

[41]  Mietek Jaroniec,et al.  Polymeric Photocatalysts Based on Graphitic Carbon Nitride , 2015, Advanced materials.

[42]  M. Bhunia,et al.  Harvesting solar light with crystalline carbon nitrides for efficient photocatalytic hydrogen evolution. , 2014, Angewandte Chemie.

[43]  M. Antonietti,et al.  In Situ Formation of Heterojunctions in Modified Graphitic Carbon Nitride: Synthesis and Noble Metal Free Photocatalysis , 2014 .

[44]  Jinsong Huang,et al.  Solvent Annealing of Perovskite‐Induced Crystal Growth for Photovoltaic‐Device Efficiency Enhancement , 2014, Advanced materials.

[45]  Lan Jiang,et al.  Functionalized Graphitic Carbon Nitride for Metal-free, Flexible and Rewritable Nonvolatile Memory Device via Direct Laser-Writing , 2014, Scientific Reports.

[46]  Chain‐Shu Hsu,et al.  Applications of functional fullerene materials in polymer solar cells , 2014 .

[47]  Bryon W. Larson,et al.  Thermal [6,6] → [6,6] Isomerization and Decomposition of PCBM (Phenyl-C61-butyric Acid Methyl Ester) , 2014 .

[48]  Christophe Ballif,et al.  Organometallic Halide Perovskites: Sharp Optical Absorption Edge and Its Relation to Photovoltaic Performance. , 2014, The journal of physical chemistry letters.

[49]  Henk J. Bolink,et al.  Perovskite solar cells employing organic charge-transport layers , 2013, Nature Photonics.

[50]  Qi Chen,et al.  Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. , 2014, ACS nano.

[51]  Laura M Herz,et al.  High Charge Carrier Mobilities and Lifetimes in Organolead Trihalide Perovskites , 2013, Advanced materials.

[52]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[53]  M. Grätzel,et al.  Title: Long-Range Balanced Electron and Hole Transport Lengths in Organic-Inorganic CH3NH3PbI3 , 2017 .

[54]  Tzung-Fang Guo,et al.  CH3NH3PbI3 Perovskite/Fullerene Planar‐Heterojunction Hybrid Solar Cells , 2013, Advanced materials.

[55]  C. Debiemme-Chouvy,et al.  Photocurrent generation in carbon nitride and carbon nitride/conjugated polymer composites. , 2012, ACS applied materials & interfaces.

[56]  Alex K.-Y. Jen,et al.  Recent advances in solution-processed interfacial materials for efficient and stable polymer solar cells , 2012 .

[57]  C. Deslouis,et al.  Atomic Force Microscopy Studies of Carbon Nitride (CNx) Films Deposited on a Conducting Polymer Substrate , 2010 .

[58]  Kazuhiro Takanabe,et al.  Synthesis of a carbon nitride structure for visible-light catalysis by copolymerization. , 2010, Angewandte Chemie.

[59]  J. Gorham,et al.  Growth and Microstructure of Nanoscale Amorphous Carbon Nitride Films Deposited by Electron Beam Irradiation of 1,2-Diaminopropane , 2009 .

[60]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[61]  M. Antonietti,et al.  A metal-free polymeric photocatalyst for hydrogen production from water under visible light. , 2009, Nature materials.

[62]  Winfried Hoffmann,et al.  PV solar electricity industry: Market growth and perspective , 2006 .

[63]  E. G. Gillan Synthesis of Nitrogen-Rich Carbon Nitride Networks from an Energetic Molecular Azide Precursor , 2000 .

[64]  Jie Yao,et al.  Preparation and Characterization of Fulleroid and Methanofullerene Derivatives , 1995 .