Adaptive elastic segmentation of brain MRI via shape-model-guided evolutionary programming

This paper presents a fully automated segmentation method for medical images. The goal is to localize and parameterize a variety of types of structure in these images for subsequent quantitative analysis. We propose a new hybrid strategy that combines a general elastic template matching approach and an evolutionary heuristic. The evolutionary algorithm uses prior statistical information about the shape of the target structure to control the behavior of a number of deformable templates. Each template, modeled in the form of a B-spline, is warped in a potential field which is itself dynamically adapted. Such a hybrid scheme proves to be promising: by maintaining a population of templates, we cover a large domain of the solution space under the global guidance of the evolutionary heuristic, and thoroughly explore interesting areas. We address key issues of automated image segmentation systems. i) The potential fields are initially designed based on the spatial features of the edges in the input image, and are subjected to spatially adaptive diffusion to guarantee the deformation of the template. This also improves its global consistency and convergence speed. ii) The deformation algorithm can modify the internal structure of the templates to allow a better match. iii) We investigate in detail the preprocessing phase that the images undergo before they can be used more effectively in the iterative elastic matching procedure: a texture classifier, trained via linear discriminant analysis of a learning set, is used to enhance the contrast of the target structure with respect to surrounding tissues. iv) We show how these techniques interact within a statistically driven evolutionary scheme to achieve a better tradeoff between template flexibility and sensitivity to noise and outliers. We focus on understanding the features of template matching that are most beneficial in terms of the achieved match. Examples from simulated and real image data are discussed, with considerations of algorithmic efficiency.

[1]  A. K. Rigler,et al.  Accelerating the convergence of the back-propagation method , 1988, Biological Cybernetics.

[2]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 2000, Springer Berlin Heidelberg.

[3]  Timothy F. Cootes,et al.  The Use of Active Shape Models for Locating Structures in Medical Images , 1993, IPMI.

[4]  Xavier Pennec L'incertitude dans les problèmes de reconnaissance et de recalage - Applications en imagerie médicale et biologie moléculaire , 1996 .

[5]  Anil K. Jain,et al.  Unsupervised texture segmentation using Gabor filters , 1990, 1990 IEEE International Conference on Systems, Man, and Cybernetics Conference Proceedings.

[6]  Guido Gerig,et al.  Segmentation of 2-D and 3-D objects from MRI volume data using constrained elastic deformations of flexible Fourier contour and surface models , 1996, Medical Image Anal..

[7]  Junaed Sattar Snakes , Shapes and Gradient Vector Flow , 2022 .

[8]  John C. Platt,et al.  Elastically deformable models , 1987, SIGGRAPH.

[9]  Emanuel Falkenauer,et al.  A hybrid grouping genetic algorithm for bin packing , 1996, J. Heuristics.

[10]  Yoh-Han Pao,et al.  Combinatorial optimization with use of guided evolutionary simulated annealing , 1995, IEEE Trans. Neural Networks.

[11]  O. Faugeras,et al.  Statistical shape influence in geodesic active contours , 2002, 5th IEEE EMBS International Summer School on Biomedical Imaging, 2002..

[12]  James S. Duncan,et al.  Boundary Finding with Parametrically Deformable Models , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Guillermo Sapiro,et al.  Color Snakes , 1997, Comput. Vis. Image Underst..

[14]  Heinz Mühlenbein,et al.  Evolution algorithms in combinatorial optimization , 1988, Parallel Comput..

[15]  Rangaraj M. Rangayyan,et al.  Gradient and texture analysis for the classification of mammographic masses , 2000, IEEE Transactions on Medical Imaging.

[16]  Jeih-San Liow,et al.  Qualitative and Quantitative Evaluation of Six Algorithms for Correcting Intensity Nonuniformity Effects , 2001, NeuroImage.

[17]  Rachid Deriche,et al.  Using Canny's criteria to derive a recursively implemented optimal edge detector , 1987, International Journal of Computer Vision.

[18]  Paul Thompson,et al.  Mapping tumor growth rates in patients with malignant gliomas: A test of two algorithms , 2000, NeuroImage.

[19]  Johan Montagnat,et al.  Representation, shape, topology and evolution of deformable surfaces. Application to 3D medical imag , 2000 .

[20]  Paul M. Thompson,et al.  Anatomically Driven Strategies for High-Dimensional Brain Image Warping and Pathology Detection , 1999 .

[21]  Trygve Randen,et al.  Filtering for Texture Classification: A Comparative Study , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Yongmin Kim,et al.  A methodology for evaluation of boundary detection algorithms on medical images , 1997, IEEE Transactions on Medical Imaging.

[23]  Milan Sonka,et al.  Directional 3D Edge Detection in Anisotropic Data: Detector Design and Performance Assessment , 2000, Comput. Vis. Image Underst..

[24]  Avinash C. Kak,et al.  PCA versus LDA , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  M S Cohen,et al.  Rapid and effective correction of RF inhomogeneity for high field magnetic resonance imaging , 2000, Human brain mapping.

[26]  Alan C. Evans,et al.  A nonparametric method for automatic correction of intensity nonuniformity in MRI data , 1998, IEEE Transactions on Medical Imaging.

[27]  Michael Isard,et al.  Active Contours , 2000, Springer London.

[28]  M.,et al.  Statistical and Structural Approaches to Texture , 2022 .

[29]  Jerry L. Prince,et al.  Convexity analysis of active contour problems , 1999, Image Vis. Comput..

[30]  J. Gee,et al.  An Empirical Model of Brain Shape , 1998 .

[31]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[32]  Alberto Del Bimbo,et al.  Visual Image Retrieval by Elastic Matching of User Sketches , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[33]  David J. Burr,et al.  Elastic Matching of Line Drawings , 1981, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[34]  Charles Fleurent,et al.  Object-oriented implementation of heuristic search methods for Graph Coloring, Maximum Clique, and Satisfiability , 1993, Cliques, Coloring, and Satisfiability.

[35]  Richard A. Robb,et al.  Optimized homomorphic unsharp masking for MR grayscale inhomogeneity correction , 1998, IEEE Transactions on Medical Imaging.

[36]  Lawrence H. Staib,et al.  Boundary finding with correspondence using statistical shape models , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[37]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[38]  Bernd Freisleben,et al.  New Genetic Local Search Operators for the Traveling Salesman Problem , 1996, PPSN.

[39]  Mark Weiss Algorithms, Data Structures, and Problem Solving With C++ , 1996 .

[40]  Anil K. Jain,et al.  Object Matching Using Deformable Templates , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[41]  Timothy F. Cootes,et al.  Active Shape Models-Their Training and Application , 1995, Comput. Vis. Image Underst..

[42]  Michael I. Miller,et al.  REPRESENTATIONS OF KNOWLEDGE IN COMPLEX SYSTEMS , 1994 .

[43]  Jacques Lévy Véhel,et al.  Texture-based Video Indexing , 2000 .

[44]  Demetri Terzopoulos,et al.  Regularization of Inverse Visual Problems Involving Discontinuities , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[45]  Jerry L. Prince,et al.  Convexity analysis of active contour problems , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[46]  Josef Kittler,et al.  On local linear transform and Gabor filter representation of texture , 1992, Proceedings., 11th IAPR International Conference on Pattern Recognition. Vol. III. Conference C: Image, Speech and Signal Analysis,.

[47]  R. Woods,et al.  Mathematical/computational challenges in creating deformable and probabilistic atlases of the human brain , 2000, Human brain mapping.

[48]  Timothy F. Cootes,et al.  Use of active shape models for locating structures in medical images , 1994, Image Vis. Comput..

[49]  Remco C. Veltkamp,et al.  State of the Art in Shape Matching , 2001, Principles of Visual Information Retrieval.

[50]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[51]  Daniel Costa,et al.  An Evolutionary Tabu Search Algorithm And The NHL Scheduling Problem , 1995 .

[52]  Laurent D. Cohen,et al.  Finite-Element Methods for Active Contour Models and Balloons for 2-D and 3-D Images , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[53]  Laurent D. Cohen,et al.  On active contour models and balloons , 1991, CVGIP Image Underst..

[54]  Milan Sonka,et al.  Object localization and border detection criteria design in edge-based image segmentation: automated learning from examples , 2000, IEEE Transactions on Medical Imaging.

[55]  Timothy F. Cootes,et al.  Active Shape Models: Evaluation of a Multi-Resolution Method for Improving Image Search , 1994, BMVC.

[56]  Michael S. Lew,et al.  Principles of Visual Information Retrieval , 2001, Advances in Pattern Recognition.

[57]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.