Fabrication of microfluidic devices for packaging CMOS MEMS impedance sensors

This work presents a polydimethylsiloxane (PDMS) microfluidic device for packaging CMOS MEMS impedance sensors. The wrinkle electrodes are fabricated on PDMS substrates to ensure a connection between the pads of the sensor and the impedance instrument. The PDMS device can tolerate an injection speed of 27.12 ml/h supplied by a pump. The corresponding pressure is 643.35 Pa. The bonding strength of the device is 32.44 g/mm2. In order to demonstrate the feasibility of the device, the short circuit test and impedance measurements for air, de-ionized water, phosphate buffered saline (PBS) at four concentrations (1, 2 × 10−4, 1 × 10−4, and 6.7 × 10−5 M) were performed. The experimental results show that the developed device integrated with a sensor can differentiate various samples.

[1]  W Thormann,et al.  Surface biopassivation of replicated poly(dimethylsiloxane) microfluidic channels and application to heterogeneous immunoreaction with on-chip fluorescence detection. , 2001, Analytical chemistry.

[2]  G. Shi,et al.  A water-soluble cationic oligopyrene derivative : Spectroscopic studies and sensing applications , 2009 .

[3]  Jinook Kim,et al.  Wave formation by heating in thin metal film on an elastomer , 2001 .

[4]  Z. Suo,et al.  Wrinkling of a compressed elastic film on a viscous layer , 2002 .

[5]  J. Goettert,et al.  CMOS compatible integration of three-dimensional microfluidic systems based on low-temperature transfer of SU-8 films , 2006, Journal of Microelectromechanical Systems.

[6]  Ling-Sheng Jang,et al.  Resonant Mode-hopping Micromixing. , 2007, Sensors and actuators. A, Physical.

[7]  Samuel Rosset,et al.  Microstructure of 5 keV gold-implanted polydimethylsiloxane , 2008 .

[8]  Sundman Bo.,et al.  エレクトロウェッティングディスプレイの油脱ぬれパターンの観測と光学的意味 | 文献情報 | J-GLOBAL 科学技術総合リンクセンター , 2008 .

[9]  S. A. Stern,et al.  Diffusion of Gases in Silicone Polymers: Molecular Dynamics Simulations , 1998 .

[10]  E. Wang,et al.  Ionic liquids supported growth of highly ordered microdroplets induced by fluidic leakage at poly(dimethylsiloxane) interfaces. , 2008, Analytica chimica acta.

[11]  Bruce K. Gale,et al.  Determining the optimal PDMS–PDMS bonding technique for microfluidic devices , 2008 .

[12]  M. Toner,et al.  Cellular Micropatterns on Biocompatible Materials , 1998, Biotechnology progress.

[13]  L. Jang,et al.  Peristaltic piezoelectric micropump system for biomedical applications , 2007, Biomedical microdevices.

[14]  Risto Kostiainen,et al.  Re-usable multi-inlet PDMS fluidic connector , 2006 .

[15]  D. Erickson,et al.  Integrated microfluidic devices , 2004 .

[16]  Jens Anders Branebjerg,et al.  Microfluidics-a review , 1993 .

[17]  Z. Suo,et al.  Stretchable gold conductors on elastomeric substrates , 2003 .

[18]  George M. Whitesides,et al.  Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer , 1998, Nature.

[19]  Yong Liu,et al.  Integrated cell manipulation system--CMOS/microfluidic hybrid. , 2007, Lab on a chip.

[20]  Ling-Sheng Jang,et al.  Microfluidic device for cell capture and impedance measurement , 2007, Biomedical microdevices.

[21]  Mohamad Sawan,et al.  A 0.18-μm CMOS capacitive sensor Lab-on-Chip , 2008 .

[22]  Jan H. J. Fluitman,et al.  Towards integrated microliquid handling systems , 1994 .

[23]  W. Dötzel,et al.  Hybrid-assembled micro dosing system using silicon-based micropump/ valve and mass flow sensor , 1998 .

[24]  M. Iyer,et al.  Disposable Polydimethylsioxane Package for 'Bio~Microfluidic System' , 2005, Proceedings Electronic Components and Technology, 2005. ECTC '05..