A Clustering Approach to Path Planning for Groups

The paper introduces a new method of planning paths for crowds in dynamic environment represented by a graph of vertices and edges, where the edge weight as well as the graph topology may change, but the method is also applicable to environment with a different representation. The utilization of clusterization enables the method to use the computed path for a group of agents. In this way a speed-up and memory savings are achieved at a cost of some path suboptimality. The experiments showed good behaviour of the method as to the speed-up and relative error.

[1]  Ivana Kolingerová,et al.  Accelerating the local search algorithm for the facility location , 2010 .

[2]  Anil K. Jain,et al.  Clustering Methodologies in Exploratory Data Analysis , 1980, Adv. Comput..

[3]  Roger L. Hughes,et al.  A continuum theory for the flow of pedestrians , 2002 .

[4]  Sudipto Guha,et al.  Improved combinatorial algorithms for the facility location and k-median problems , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[5]  Anthony Stentz,et al.  Optimal and efficient path planning for partially-known environments , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[6]  Myoungho Sunwoo,et al.  Local Path Planning for Off-Road Autonomous Driving With Avoidance of Static Obstacles , 2012, IEEE Transactions on Intelligent Transportation Systems.

[7]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[8]  Adam Meyerson,et al.  Online facility location , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[9]  Kay Chen Tan,et al.  Evolutionary artificial potential fields and their application in real time robot path planning , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[10]  F. James Rohlf,et al.  12 Single-link clustering algorithms , 1982, Classification, Pattern Recognition and Reduction of Dimensionality.

[11]  Sven Koenig,et al.  Generalized Fringe-Retrieving A*: faster moving target search on state lattices , 2010, AAMAS.

[12]  Luc Van Gool,et al.  You'll never walk alone: Modeling social behavior for multi-target tracking , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[13]  Sebastian Thrun,et al.  Anytime Dynamic A*: An Anytime, Replanning Algorithm , 2005, ICAPS.

[14]  Dinesh Manocha,et al.  ClearPath: highly parallel collision avoidance for multi-agent simulation , 2009, SCA '09.

[15]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[16]  Jian Li,et al.  Parallelizing continuum crowds , 2010, VRST '10.

[17]  Adi Botea,et al.  Hierarchical path planning for multi-size agents in heterogeneous environments , 2008, 2008 IEEE Symposium On Computational Intelligence and Games.

[18]  Palma Blonda,et al.  A survey of fuzzy clustering algorithms for pattern recognition. I , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[19]  Hao Jiang,et al.  Continuum crowd simulation in complex environments , 2010, Comput. Graph..

[20]  Adrien Treuille,et al.  Continuum crowds , 2006, SIGGRAPH 2006.

[21]  Shigeyuki Okazaki,et al.  A study of simulation model for pedestrian movement with evacuation and queuing , 1993 .

[22]  Dinesh Manocha,et al.  Simulating heterogeneous crowd behaviors using personality trait theory , 2011, SCA '11.

[23]  Nils J. Nilsson,et al.  A Formal Basis for the Heuristic Determination of Minimum Cost Paths , 1968, IEEE Trans. Syst. Sci. Cybern..

[24]  Benjamin King Step-Wise Clustering Procedures , 1967 .

[25]  Qingquan Li,et al.  Hierarchical multi-objective evacuation routing in stadium using ant colony optimization approach , 2011 .

[26]  Krista Rizman alik,et al.  A sweep-line algorithm for spatial clustering , 2009 .

[27]  Sven Koenig,et al.  Moving target D* Lite , 2010, AAMAS.

[28]  Glenn Reinman,et al.  A modular framework for adaptive agent-based steering , 2011, SI3D.

[29]  Céline Loscos,et al.  Intuitive crowd behavior in dense urban environments using local laws , 2003, Proceedings of Theory and Practice of Computer Graphics, 2003..

[30]  Padhraic Smyth,et al.  From Data Mining to Knowledge Discovery in Databases , 1996, AI Mag..

[31]  Anthony Stentz,et al.  The Focussed D* Algorithm for Real-Time Replanning , 1995, IJCAI.

[32]  R. Sokal,et al.  1 – The Principles of Numerical Taxonomy: Twenty-five Years Later , 1985 .

[33]  Stephen Warshall,et al.  A Theorem on Boolean Matrices , 1962, JACM.

[34]  Eric Bonabeau,et al.  Agent-based modeling: Methods and techniques for simulating human systems , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Geoffrey H. Ball,et al.  ISODATA, A NOVEL METHOD OF DATA ANALYSIS AND PATTERN CLASSIFICATION , 1965 .

[36]  Ivana Kolingerová,et al.  Path Planning for Groups on Graphs , 2017, ICCS.

[37]  David Furcy,et al.  Lifelong Planning A , 2004, Artif. Intell..

[38]  Jessica K. Hodgins,et al.  Reactive pedestrian path following from examples , 2004, The Visual Computer.

[39]  Benedetto Piccoli,et al.  A Fluid-Dynamic Traffic Model on Road Networks , 2007 .

[40]  Rene G. Burgess,et al.  Realistic Human Path Planning using Fluid Simulation , 2004 .