Polarizable atomic multipole X-ray refinement: application to peptide crystals

A method to accelerate the computation of structure factors from an electron density described by anisotropic and aspherical atomic form factors via fast Fourier transformation is described for the first time.

[1]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[2]  Nohad Gresh,et al.  Key role of the polarization anisotropy of water in modeling classical polarizable force fields. , 2007, The journal of physical chemistry. A.

[3]  Nathan A. Baker,et al.  Polarizable atomic multipole solutes in a Poisson-Boltzmann continuum. , 2007, The Journal of chemical physics.

[4]  C. Lecomte,et al.  On the application of an experimental multipolar pseudo-atom library for accurate refinement of small-molecule and protein crystal structures. , 2007, Acta crystallographica. Section A, Foundations of crystallography.

[5]  M. Alderton,et al.  Distributed multipole analysis , 2006 .

[6]  Nohad Gresh,et al.  Development, validation, and applications of anisotropic polarizable molecular mechanics to study ligand and drug-receptor interactions. , 2006, Current pharmaceutical design.

[7]  T. Darden,et al.  Towards a force field based on density fitting. , 2006, The Journal of chemical physics.

[8]  Charles L. Brooks,et al.  Fluctuating charge force fields: recent developments and applications from small molecules to macromolecular biological systems , 2006 .

[9]  Alexander D. MacKerell,et al.  A polarizable model of water for molecular dynamics simulations of biomolecules , 2006 .

[10]  Philip Coppens,et al.  Charge densities come of age. , 2005, Angewandte Chemie.

[11]  Eric J. Sorin,et al.  How well can simulation predict protein folding kinetics and thermodynamics? , 2005, Annual review of biophysics and biomolecular structure.

[12]  Vijay S. Pande,et al.  Empirical force‐field assessment: The interplay between backbone torsions and noncovalent term scaling , 2005, J. Comput. Chem..

[13]  Michael R. Shirts,et al.  Solvation free energies of amino acid side chain analogs for common molecular mechanics water models. , 2005, The Journal of chemical physics.

[14]  Claude Lecomte,et al.  Advances in protein and small-molecule charge-density refinement methods using MoPro , 2005 .

[15]  Richard A Friesner,et al.  Modeling Polarization in Proteins and Protein-ligand Complexes: Methods and Preliminary Results. , 2005, Advances in protein chemistry.

[16]  P. Coppens,et al.  The interplay between experiment and theory in charge-density analysis. , 2004, Acta crystallographica. Section A, Foundations of crystallography.

[17]  Pengyu Y. Ren,et al.  Temperature and Pressure Dependence of the AMOEBA Water Model , 2004 .

[18]  R E Cachau,et al.  Ultrahigh resolution drug design I: Details of interactions in human aldose reductase–inhibitor complex at 0.66 Å , 2004, Proteins.

[19]  Celeste Sagui,et al.  Towards an accurate representation of electrostatics in classical force fields: efficient implementation of multipolar interactions in biomolecular simulations. , 2004, The Journal of chemical physics.

[20]  P V Afonine,et al.  On a fast calculation of structure factors at a subatomic resolution. , 2004, Acta crystallographica. Section A, Foundations of crystallography.

[21]  Michael R. Shirts,et al.  Extremely precise free energy calculations of amino acid side chain analogs: Comparison of common molecular mechanics force fields for proteins , 2003 .

[22]  Benoît Roux,et al.  Modeling induced polarization with classical Drude oscillators: Theory and molecular dynamics simulation algorithm , 2003 .

[23]  Pengyu Y. Ren,et al.  Polarizable Atomic Multipole Water Model for Molecular Mechanics Simulation , 2003 .

[24]  J. Ponder,et al.  Force fields for protein simulations. , 2003, Advances in protein chemistry.

[25]  Michael R. Shirts,et al.  Atomistic protein folding simulations on the submillisecond time scale using worldwide distributed computing. , 2003, Biopolymers.

[26]  Pengyu Y. Ren,et al.  Consistent treatment of inter‐ and intramolecular polarization in molecular mechanics calculations , 2002, J. Comput. Chem..

[27]  V. Pande,et al.  Absolute comparison of simulated and experimental protein-folding dynamics , 2002, Nature.

[28]  Paul D. Adams,et al.  On the handling of atomic anisotropic displacement parameters , 2002 .

[29]  J. Applequist Maxwell–Cartesian spherical harmonics in multipole potentials and atomic orbitals , 2002 .

[30]  G. Langlet,et al.  International Tables for Crystallography , 2002 .

[31]  T. Hahn International tables for crystallography , 2002 .

[32]  M. Manoharan,et al.  Detection of alkali metal ions in DNA crystals using state-of-the-art X-ray diffraction experiments. , 2001, Nucleic acids research.

[33]  D. Rees,et al.  Conformational flexibility of B-DNA at 0.74 A resolution: d(CCAGTACTGG)(2). , 2000, Journal of molecular biology.

[34]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[35]  P. Kuhn,et al.  The 0.78 A structure of a serine protease: Bacillus lentus subtilisin. , 1998, Biochemistry.

[36]  A T Brünger,et al.  Crystallographic refinement by simulated annealing: methods and applications. , 1997, Methods in enzymology.

[37]  Jack D. Dunitz,et al.  Atomic Dispacement Parameter Nomenclature. Report of a Subcommittee on Atomic Displacement Parameter Nomenclature , 1996 .

[38]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[39]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[40]  R. Huber,et al.  Accurate Bond and Angle Parameters for X-ray Protein Structure Refinement , 1991 .

[41]  Axel T. Brunger,et al.  Simulated Annealing in Crystallography , 1991 .

[42]  A T Brünger,et al.  Slow-cooling protocols for crystallographic refinement by simulated annealing. , 1990, Acta crystallographica. Section A, Foundations of crystallography.

[43]  P. Coppens,et al.  Closed‐form expressions for Fourier–Bessel transform of Slater‐type functions , 1990 .

[44]  J. Applequist,et al.  Traceless cartesian tensor forms for spherical harmonic functions: new theorems and applications to electrostatics of dielectric media , 1989 .

[45]  M. Karplus,et al.  X-ray refinement of protein structures by simulated annealing: test of the method on myohemerythrin. , 1989, Acta crystallographica. Section A, Foundations of crystallography.

[46]  Axel T. Brunger,et al.  A memory-efficient fast Fourier transformation algorithm for crystallographic refinement on supercomputers , 1989 .

[47]  M. Karplus,et al.  Crystallographic refinement by simulated annealing: application to crambin , 1989 .

[48]  M. Karplus,et al.  Crystallographic R Factor Refinement by Molecular Dynamics , 1987, Science.

[49]  R. Stewart On the mapping of electrostatic properties from bragg diffraction data , 1979 .

[50]  Philip Coppens,et al.  Testing aspherical atom refinements on small-molecule data sets , 1978 .

[51]  R. C. Agarwal A new least‐squares refinement technique based on the fast Fourier transform algorithm: erratum , 1978 .

[52]  R. Stewart Electric field gradients from generalized X-ray scattering factors , 1977 .

[53]  R. Stewart,et al.  On the use of generalized x‐ray scattering factors for analysis of charge density from gas‐phase electron diffraction intensities , 1977 .

[54]  T. Eyck,et al.  Efficient structure-factor calculation for large molecules by the fast Fourier transform , 1977 .

[55]  R. Stewart,et al.  Crystal structure refinements with generalized scattering factors. III. Refinement of 1, 1′‐azobiscarbamide and melamine, 2,4,6‐triamino‐s‐ triazine, at the octopole level , 1976 .

[56]  L. T. Eyck,et al.  Crystallographic fast Fourier transforms , 1973 .

[57]  良二 上田 J. Appl. Cryst.の発刊に際して , 1970 .

[58]  J. Pople,et al.  Self‐Consistent Molecular Orbital Methods. IV. Use of Gaussian Expansions of Slater‐Type Orbitals. Extension to Second‐Row Molecules , 1970 .

[59]  J. Pople,et al.  Self‐Consistent Molecular‐Orbital Methods. I. Use of Gaussian Expansions of Slater‐Type Atomic Orbitals , 1969 .

[60]  Henry Margenau,et al.  Theory of intermolecular forces , 1969 .

[61]  K. Kurki-suonio On the information about deformations of the atoms in X‐ray diffraction data , 1968 .

[62]  J. Tukey,et al.  An algorithm for the machine calculation of complex Fourier series , 1965 .

[63]  F. Young Biochemistry , 1955, The Indian Medical Gazette.