Infrared and upconversion spectroscopic studies of high Er 3+ content transparent YAG ceramic

In this article, we report the detailed spectroscopic studies of high Er3+content (50%) transparent YAG ceramic co-doped with nominal Cr3+ content (0.1 mol %). Various radiative and non-radiative spectroscopic properties such as radiative decay time, fluorescence branching ratio, emission/absorption cross sections, internal radiative quantum yields of the infrared and the upconverted emission bands are explored using standard experimental and theoretical methods and compared with YAG single crystal. Results show that although the non-radiative losses are high for 50% Er doped ceramic; several radiative spectral properties are almost in agreement with those for the single crystal YAG. Furthermore, because of the low dopant concentration of Cr3+, the sensitizing effect of Cr3+ was not observed.

[1]  T. M. Murina,et al.  Cooperative process in Y3Al5O12:Er3+ crystals , 1986 .

[2]  M. Eichhorn,et al.  Spectroscopic properties of Er3+:YAG at 300–550 K and their effects on the 1.6 μm laser transitions , 2008 .

[3]  O. Musset,et al.  1.65-μm Er:Yb:YAG diode-pumped laser delivering 80-mJ pulse energy , 2005 .

[4]  Hisanori Fujita,et al.  Nd/Cr:YAG Ceramic Rod Laser Pumped Using Arc-Metal-Halide-Lamp , 2007 .

[5]  Todd S. Rose,et al.  Diode-pumped 1-W continuous-wave Er:YAG 3-µm laser , 2001 .

[6]  B. Judd,et al.  OPTICAL ABSORPTION INTENSITIES OF RARE-EARTH IONS , 1962 .

[7]  G. S. Ofelt Intensities of Crystal Spectra of Rare‐Earth Ions , 1962 .

[8]  Yan Feng,et al.  Upconversion luminescence of Er3+ in highly transparent YAG ceramics , 2004 .

[9]  Reid,et al.  Energy levels and correlation crystal-field effects in Er3+-doped garnets. , 1993, Physical review. B, Condensed matter.

[10]  D. L. Dexter A Theory of Sensitized Luminescence in Solids , 1953 .

[11]  Jun Zhou,et al.  Upconversion luminescence of high content Er-doped YAG transparent ceramics , 2010 .

[12]  Wenbin Liu,et al.  Fabrication, microstructure and optical properties of polycrystalline Er3+:Y3Al5O12 ceramics , 2011 .

[13]  M. Malinowski,et al.  Intensity of optical transitions of Er3+ in Yb3Al5O12 crystal , 2008 .

[14]  Huailiang Xu,et al.  Decay properties of Er3+ ions in Er3+:YAG and Er3+:YAlO3 , 2002 .

[15]  Phillip P. Jenkins,et al.  Rare Earth Doped High Temperature Ceramic Selective Emitters , 1999 .

[16]  Hisanori Fujita,et al.  Disk-type Nd/Cr:YAG ceramic lasers pumped by arc-metal-halide-lamp , 2006 .

[17]  H. Yagi,et al.  Spectroscopic and stimulated emission Characteristics of Nd/sup 3+/ in transparent YAG ceramics , 2004, IEEE Journal of Quantum Electronics.

[18]  Zoltan J. Kiss,et al.  CROSS‐PUMPED Cr3+−Nd3+:YAG LASER SYSTEM , 1964 .

[19]  Ken-ichi Ueda,et al.  Highly Efficient Flashlamp-Pumped Cr3+ and Nd3+ Codoped Y3Al5O12 Ceramic Laser , 2006 .

[20]  Michael Bass,et al.  Effects of energy transfer among Er 3+ ions on the fluorescence decay and lasing properties of heavily doped Er:Y 3 Al 5 O 12 , 1990 .

[21]  Siyuan Zhang,et al.  Concentration effects of Er3+ ion in YAG:Er laser crystals , 2000 .

[22]  F. Vernon,et al.  Diode-pumped 1-W continuous-wave Er:YAG 3-mum laser. , 1999, Optics letters.

[23]  Yubai Pan,et al.  Optical properties of Er, Yb co-doped YAG transparent ceramics , 2011 .

[24]  K. Cheah,et al.  Intense 1540nm emission from Er doped Ce:YAG phosphor , 2007 .

[25]  Z. Jian,et al.  Preparation and Upconversion Luminescence of Y3Al5O12 : Yb3+, Er3+ Transparent Ceramics , 2006 .

[26]  Klaus Petermann,et al.  Continuous wave 1.6 μm laser action in Er doped garnets at room temperature⋆ , 1989 .

[27]  Dmitri Z. Garbuzov,et al.  Resonantly diode laser pumped 1.6-μm-erbium-doped yttrium aluminum garnet solid-state laser , 2005 .

[28]  T. H. Allik,et al.  Absorption intensities and emission cross sections of principal intermanifold and inter-Stark transitions of Er3+(4f11) in polycrystalline ceramic garnet Y3Al5O12 , 2005 .

[29]  A. Ikesue,et al.  Transparent polycrystalline ceramic laser materials , 2008 .