Parameter estimation of DC motor through whale optimization algorithm

This article estimates the unknown dc motor parameters by adapting the adaptive model with the reference model created by experimental data onto armature current and speed response from separately excited dc motor .The field flux dynamics, which is usually ignored, is included to model the dynamics of the motor. The block diagram including the flux dynamics and model parameters is considered as the adaptive model. The integral time square error between the instant experimental data and the corresponding adaptive model data is taken as cost function. The Whale optimization algorithm is used to minimize the cost function. Additionally, to improve the performances of optimization algorithm and for accurate result, the experimental data is divided into three intervals which form the three inequality constraints. A fixed penalty value is added to the cost function for violating these constraints. The effectiveness of estimation with two different methods is validated by convergence curve.

[1]  Jonathan Becedas,et al.  On-Line Fast Algebraic Parameter and State Estimation for a DC Motor Applied to Adaptive Control , 2008 .

[2]  Mohamed Rachid Mekideche,et al.  Parameter identification of a separately excited dc motor via inverse problem methodology , 2009 .

[3]  Ahmed Rubaai,et al.  Online identification and control of a DC motor using learning adaptation of neural networks , 2000 .

[4]  Radojka Krneta,et al.  Recursive least squares method in parameters identification of DC motors models , 2005 .

[5]  João Carlos Basilio,et al.  State-space parameter identification in a second control laboratory , 2004, IEEE Transactions on Education.

[6]  M. S. A. Mohamad,et al.  Comparison between PSO and OLS for NARX parameter estimation of a DC motor , 2013, 2013 IEEE Symposium on Industrial Electronics & Applications.

[7]  Biao Huang,et al.  System Identification , 2000, Control Theory for Physicists.

[8]  Stepan Ozana,et al.  PID Controller Design Based on Global Optimization Technique with Additional Constraints , 2016 .

[9]  B. Anderson,et al.  Digital control of dynamic systems , 1981, IEEE Transactions on Acoustics, Speech, and Signal Processing.

[10]  Surajudeen Adewusi,et al.  Modeling and Parameter Identification of a DC Motor Using Constraint Optimization Technique , 2016 .

[11]  Andrew Lewis,et al.  The Whale Optimization Algorithm , 2016, Adv. Eng. Softw..

[12]  P. Geethanjali,et al.  PMDC Motor Parameter Estimation Using Bio-Inspired Optimization Algorithms , 2017, IEEE Access.

[13]  H. Sira-Ramírez,et al.  Open-loop algebraic identification method for a DC motor , 2007, 2007 European Control Conference (ECC).

[14]  D. Puangdownreong,et al.  Application of flower pollination algorithm to parameter identification of DC motor model , 2017, 2017 International Electrical Engineering Congress (iEECON).

[15]  M Hadef,et al.  Parameter Identification of a DC Motor via Moments Method , 2008 .

[16]  Byamakesh Nayak,et al.  Parameter Estimation of DC Motor using Adaptive Transfer function based on Nelder-Mead Optimisation , 2018 .

[17]  F. G. Martins Tuning PID Controllers using the ITAE Criterion * , 2022 .

[18]  Yannis L. Karnavas,et al.  PMDC coreless micro-motor parameters estimation through Grey Wolf Optimizer , 2016, 2016 XXII International Conference on Electrical Machines (ICEM).

[19]  Damir Zarko,et al.  Optimization in design of electric machines: Methodology and workflow , 2015, 2015 Intl Aegean Conference on Electrical Machines & Power Electronics (ACEMP), 2015 Intl Conference on Optimization of Electrical & Electronic Equipment (OPTIM) & 2015 Intl Symposium on Advanced Electromechanical Motion Systems (ELECTROMOTION).

[20]  Michael Ruderman,et al.  Optimal State Space Control of DC Motor , 2008 .

[21]  Wei-wu DC Motor Parameter Identification Using Speed Step Responses , 2015 .

[22]  Heinz Unbehauen,et al.  A review of identification in continuous-time systems , 1998 .

[23]  D. P. Atherton,et al.  Tuning PID controllers with integral performance criteria , 1991 .

[24]  William S. Levine,et al.  The Control Handbook , 2005 .