Stochastics An International Journal of Probability and Stochastic

[1]  J. Jacod Calcul stochastique et problèmes de martingales , 1979 .

[2]  Existence and uniqueness for stochastic differential equations , 1979 .

[3]  H. Komatsu Ultradifferentiability of solutions of ordinary differential equations , 1980 .

[4]  Yuh-tai Ju SINGULAR OPTIMAL CONTROL , 1980 .

[5]  I. Karatzas A class of singular stochastic control problems , 1983, Advances in Applied Probability.

[6]  S. Shreve,et al.  Connections between Optimal Stopping and Singular Stochastic Control I. Monotone Follower Problems , 1984 .

[7]  S. Shreve,et al.  Connections Between Optimal Stopping and Singular Stochastic Control II. Reflected Follower Problems , 1985 .

[8]  I Karatzas,et al.  Probabilistic aspects of finite-fuel stochastic control. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[9]  P. Chow,et al.  Additive control of stochastic linear systems with finite horizon , 1985 .

[10]  S. Shreve,et al.  Equivalent models for finite-fuel stochastic control , 1986 .

[11]  A. Bressan On differential systems with impulsive controls , 1987 .

[12]  KarouiNicole El,et al.  Compactification methods in the control of degenerate diffusions: existence of an optimal control , 1987 .

[13]  Ioannis Karatzas,et al.  Brownian Motion and Stochastic Calculus , 1987 .

[14]  I. Karatzas,et al.  Probabilistic aspects of finite-fuel, reflected follower problems , 1988 .

[15]  R. Vinter,et al.  A maximum principle for optimal processes with discontinuous trajectories , 1988 .

[16]  A. Bressan,et al.  On differential systems with vector-valued impulsive controls. , 1988 .

[17]  S. Peng A general stochastic maximum principle for optimal control problems , 1990 .

[18]  U. Haussmann,et al.  On the existence of optimal controls , 1990 .

[19]  M. Yor,et al.  Continuous martingales and Brownian motion , 1990 .

[20]  P. Protter Stochastic integration and differential equations , 1990 .

[21]  S. Peng,et al.  Adapted solution of a backward stochastic differential equation , 1990 .

[22]  A. Bressan,et al.  Impulsive control systems with commutative vector fields , 1991 .

[23]  G. D. Maso,et al.  On systems of ordinary differential equations with measures as controls , 1991, Differential and Integral Equations.

[24]  I. Karatzas,et al.  A new approach to the skorohod problem, and its applications , 1991 .

[25]  B. Miller,et al.  Optimal impulse control problem with constrained number of impulses , 1992 .

[26]  W. Fleming,et al.  Controlled Markov processes and viscosity solutions , 1992 .

[27]  M. K. Ghosh,et al.  Discrete-time controlled Markov processes with average cost criterion: a survey , 1993 .

[28]  U. Haussmann,et al.  The stochastic maximum principle for a singular control problem , 1994 .

[29]  U. Haussmann,et al.  Singular Optimal Stochastic Controls II: Dynamic Programming , 1995 .

[30]  U. Haussmann,et al.  Singular Optimal Stochastic Controls I: Existence , 1995 .

[31]  John N. Tsitsiklis,et al.  Neuro-Dynamic Programming , 1996, Encyclopedia of Machine Learning.

[32]  O. Hernández-Lerma,et al.  Policy Iteration for Average Cost Markov Control Processes on Borel Spaces , 1997 .

[33]  G. N. Silva,et al.  Necessary Conditions for Optimal Impulsive Control Problems , 1997 .

[34]  S. T. Zavalishchin,et al.  Dynamic Impulse Systems: Theory and Applications , 1997 .

[35]  W. Fleming Book Review: Discrete-time Markov control processes: Basic optimality criteria , 1997 .

[36]  M. Kohlmann,et al.  Connections between optimal stopping and singular stochastic control , 1998 .

[37]  John N. Tsitsiklis,et al.  Simulation-based optimization of Markov reward processes , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[38]  S. Jacka Keeping a satellite aloft: two finite fuel stochastic control models , 1999, Journal of Applied Probability.

[39]  L. Alvarez A class of solvable singular stochastic control problems , 1999 .

[40]  O. Hernández-Lerma,et al.  Further topics on discrete-time Markov control processes , 1999 .

[41]  X. Zhou,et al.  Stochastic Controls: Hamiltonian Systems and HJB Equations , 1999 .

[42]  Vivek S. Borkar,et al.  Learning Algorithms for Markov Decision Processes with Average Cost , 2001, SIAM J. Control. Optim..

[43]  B. Øksendal,et al.  Optimal harvesting from interacting populations in a stochastic environment , 2001 .

[44]  Luis H. R. Alvarez,et al.  Singular Stochastic Control, Linear Diffusions, and Optimal Stopping: A Class of Solvable Problems , 2000, SIAM J. Control. Optim..

[45]  F. Boetius Bounded Variation Singular Stochastic Control and Associated Dynkin Game , 2001 .

[46]  B. Øksendal,et al.  Optimal consumption and portfolio in a jump diffusion market with proportional transaction costs , 2001 .

[47]  Singular stochastic control and its relations to Dynkin game and entry-exit problems , 2001 .

[48]  Benjamin Van Roy Neuro-Dynamic Programming: Overview and Recent Trends , 2002 .

[49]  Boris M. Miller,et al.  Generalized Solutions in Nonlinear Stochastic Control Problems , 2001, SIAM J. Control. Optim..

[50]  Zhiyuan Ren,et al.  A time aggregation approach to Markov decision processes , 2002, Autom..

[51]  S. Jacka Avoiding the origin: A finite-fuel stochastic control problem , 2002 .

[52]  John N. Tsitsiklis,et al.  Approximate Gradient Methods in Policy-Space Optimization of Markov Reward Processes , 2003, Discret. Event Dyn. Syst..

[53]  Boris M. Miller,et al.  Impulsive Control in Continuous and Discrete-Continuous Systems , 2003 .

[54]  Vijay R. Konda,et al.  OnActor-Critic Algorithms , 2003, SIAM J. Control. Optim..

[55]  William L. Cooper,et al.  CONVERGENCE OF SIMULATION-BASED POLICY ITERATION , 2003, Probability in the Engineering and Informational Sciences.

[56]  S. Marcus,et al.  Approximate receding horizon approach for Markov decision processes: average reward case , 2003 .

[57]  Fernando M. Lobo Pereira,et al.  A Nondegenerate Maximum Principle for the Impulse Control Problem with State Constraints , 2005, SIAM J. Control. Optim..

[58]  B. Mezerdi,et al.  A General Stochastic Maximum Principle for Singular Control Problems , 2005 .

[59]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[60]  A. Chala,et al.  The stochastic maximum principle in optimal control of singular diffusions with non linear coefficients , 2005 .

[61]  Boris M. Miller,et al.  Maximum Principle for Singular Stochastic Control Problems , 2006, SIAM J. Control. Optim..

[62]  Quanxin Zhu,et al.  Average optimality for Markov decision processes in borel spaces: a new condition and approach , 2006, Journal of Applied Probability.

[63]  J. K. Hunter,et al.  Measure Theory , 2007 .

[64]  Hyeong Soo Chang,et al.  A policy improvement method for constrained average Markov decision processes , 2007, Oper. Res. Lett..

[65]  Dimitri P. Bertsekas,et al.  Convergence Results for Some Temporal Difference Methods Based on Least Squares , 2009, IEEE Transactions on Automatic Control.

[66]  Raúl Montes-de-Oca,et al.  Average cost Markov control processes: stability with respect to the Kantorovich metric , 2009, Math. Methods Oper. Res..

[67]  B. Øksendal,et al.  Applied Stochastic Control of Jump Diffusions , 2004, Universitext.