Metric tensor for multicomponent edge detection

In this paper, we present the use of differential geometry for the segmentation of multispectral images, which allows us to unify several known methods including projecting onto a particular axis or a particular plan. This is done by choosing a metric tensor on the feature space computing the pullback of the metric tensor and applying standard Di Zenzo algorithm.

[1]  Silvano Di Zenzo,et al.  A note on the gradient of a multi-image , 1986, Comput. Vis. Graph. Image Process..

[2]  Aldo Cumani,et al.  Edge detection in multispectral images , 1991, CVGIP Graph. Model. Image Process..

[3]  Ron Kimmel,et al.  A general framework for low level vision , 1998, IEEE Trans. Image Process..

[4]  Thomas Brox,et al.  Nonlinear structure tensors , 2006, Image Vis. Comput..

[5]  Thomas Batard,et al.  A Metric Approach to nD Images Edge Detection with Clifford Algebras , 2009, Journal of Mathematical Imaging and Vision.

[6]  Rachid Deriche,et al.  Tensor Processing for Texture and Colour Segmentation , 2005, SCIA.