Saccadic Eye Movements Modulate Visual Responses in the Lateral Geniculate Nucleus

[1]  K. Hoffmann,et al.  Neural Mechanisms of Saccadic Suppression , 2002, Science.

[2]  E. Chichilnisky,et al.  Adaptation to Temporal Contrast in Primate and Salamander Retina , 2001, The Journal of Neuroscience.

[3]  F. Rieke Temporal Contrast Adaptation in Salamander Bipolar Cells , 2001, The Journal of Neuroscience.

[4]  R. Reid,et al.  Predicting Every Spike A Model for the Responses of Visual Neurons , 2001, Neuron.

[5]  E. J. Tehovnik,et al.  Eye Movements Modulate Visual Receptive Fields of V4 Neurons , 2001, Neuron.

[6]  J W Gnadt,et al.  The effects of saccadic eye movements on the activity of geniculate relay neurons in the monkey , 2001, Visual Neuroscience.

[7]  M. H. Rowe,et al.  Dynamic properties of retino-geniculate synapses in the cat , 2001, Visual Neuroscience.

[8]  D. Burr,et al.  Changes in visual perception at the time of saccades , 2001, Trends in Neurosciences.

[9]  J. Maunsell,et al.  Form representation in monkey inferotemporal cortex is virtually unaltered by free viewing , 2000, Nature Neuroscience.

[10]  Maria V. Sanchez-Vives,et al.  Membrane Mechanisms Underlying Contrast Adaptation in Cat Area 17In Vivo , 2000, The Journal of Neuroscience.

[11]  M. Morrone,et al.  Extraretinal Control of Saccadic Suppression , 2000, The Journal of Neuroscience.

[12]  A. Vassilev,et al.  Spatial summation of blue-on-yellow light increments and decrements in human vision , 2000, Vision Research.

[13]  D. Hubel,et al.  Microsaccadic eye movements and firing of single cells in the striate cortex of macaque monkeys , 2000, Nature Neuroscience.

[14]  Bart Krekelberg,et al.  Postsaccadic visual references generate presaccadic compression of space , 2000, Nature.

[15]  Reid R. Clay,et al.  Specificity and strength of retinogeniculate connections. , 1999, Journal of neurophysiology.

[16]  P. Lennie,et al.  Rapid adaptation in visual cortex to the structure of images. , 1999, Science.

[17]  E. Kaplan,et al.  The dynamics of primate M retinal ganglion cells , 1999, Visual Neuroscience.

[18]  Nikos K. Logothetis,et al.  Microsaccades differentially modulate neural activity in the striate and extrastriate visual cortex , 1998, Experimental Brain Research.

[19]  R. Reid,et al.  Paired-spike interactions and synaptic efficacy of retinal inputs to the thalamus , 1998, Nature.

[20]  D C Van Essen,et al.  Neural activity in areas V1, V2 and V4 during free viewing of natural scenes compared to controlled viewing. , 1998, Neuroreport.

[21]  R J Leigh,et al.  Properties of horizontal saccades accompanied by blinks. , 1998, Journal of neurophysiology.

[22]  A. Derrington,et al.  Peripheral shift reduces visual sensitivity in cat geniculate neurones , 1998, Visual Neuroscience.

[23]  S G Lisberger,et al.  Postsaccadic enhancement of initiation of smooth pursuit eye movements in monkeys. , 1998, Journal of neurophysiology.

[24]  L. Palmer,et al.  Temporal diversity in the lateral geniculate nucleus of cat , 1998, Visual Neuroscience.

[25]  L. P. O'Keefe,et al.  The influence of fixational eye movements on the response of neurons in area MT of the macaque , 1998, Visual Neuroscience.

[26]  J. Malpeli,et al.  Effects of saccades on the activity of neurons in the cat lateral geniculate nucleus. , 1998, Journal of neurophysiology.

[27]  D C Van Essen,et al.  Neural activity in areas V1, V2 and V4 during free viewing of natural scenes compared to controlled viewing , 1998, Neuroreport.

[28]  P Lennie,et al.  Distinctive characteristics of subclasses of red–green P-cells in LGN of macaque , 1998, Visual Neuroscience.

[29]  R. Shapley,et al.  The use of m-sequences in the analysis of visual neurons: Linear receptive field properties , 1997, Visual Neuroscience.

[30]  M. Carandini,et al.  A tonic hyperpolarization underlying contrast adaptation in cat visual cortex. , 1997, Science.

[31]  David C. Burr,et al.  Compression of visual space before saccades , 1997, Nature.

[32]  Alexandre Pouget,et al.  Perceived geometrical relationships affected by eye-movement signals , 1997, Nature.

[33]  Michael J. Berry,et al.  Adaptation of retinal processing to image contrast and spatial scale , 1997, Nature.

[34]  M. Gur,et al.  Visual Receptive Fields of Neurons in Primary Visual Cortex (V1) Move in Space with the Eye Movements of Fixation , 1997, Vision Research.

[35]  K. Hoffmann,et al.  Response properties of relay cells in the A-laminae of the cat's dorsal lateral geniculate nucleus after saccades , 1996, Experimental Brain Research.

[36]  D. Burr,et al.  Temporal Impulse Response Functions for Luminance and Colour During Saccades , 1996, Vision Research.

[37]  R C Reid,et al.  Efficient Coding of Natural Scenes in the Lateral Geniculate Nucleus: Experimental Test of a Computational Theory , 1996, The Journal of Neuroscience.

[38]  E. Chichilnisky,et al.  Seeing gray through the ON and OFF pathways , 1996, Visual Neuroscience.

[39]  F A Miles,et al.  Short-latency disparity vergence responses and their dependence on a prior saccadic eye movement. , 1996, Journal of neurophysiology.

[40]  K. Uchikawa,et al.  Saccadic suppression of achromatic and chromatic responses measured by increment-threshold spectral sensitivity. , 1995, Journal of the Optical Society of America. A, Optics, image science, and vision.

[41]  D. Burr,et al.  Selective suppression of the magnocellular visual pathway during saccadic eye movements , 1994, Nature.

[42]  S. Sherman,et al.  The brain-stem parabrachial region controls mode of response to visual stimulation of neurons in the cat’s lateral geniculate nucleus , 1993, Visual Neuroscience.

[43]  P. Heggelund,et al.  Brain-stem influence on visual response of lagged and nonlagged cells in the cat lateral geniculate nucleus , 1993, Visual Neuroscience.

[44]  A L Humphrey,et al.  Action of brain stem reticular afferents on lagged and nonlagged cells in the cat lateral geniculate nucleus. , 1992, Journal of neurophysiology.

[45]  R. Shapley,et al.  Spatial structure of cone inputs to receptive fields in primate lateral geniculate nucleus , 1992, Nature.

[46]  Nikos K Logothetis,et al.  The color-opponent and broad-band channels of the primate visual system , 1990, Trends in Neurosciences.

[47]  T. Nealey,et al.  Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[48]  P. Cavanagh,et al.  Saccadic suppression of low-level motion , 1989, Vision Research.

[49]  R. Lal,et al.  Gating of retinal transmission by afferent eye position and movement signals. , 1989, Science.

[50]  David A. McCormick,et al.  Acetylcholine inhibits identified interneurons in the cat lateral geniculate nucleus , 1988, Nature.

[51]  W Singer,et al.  Cholinergic mechanisms in the reticular control of transmission in the cat lateral geniculate nucleus. , 1988, Journal of neurophysiology.

[52]  L A Riggs,et al.  Blink-related eye movements. , 1987, Investigative ophthalmology & visual science.

[53]  D N Mastronarde,et al.  Two classes of single-input X-cells in cat lateral geniculate nucleus. II. Retinal inputs and the generation of receptive-field properties. , 1987, Journal of neurophysiology.

[54]  F. C. Volkmann Human visual suppression , 1986, Vision Research.

[55]  D. Robinson,et al.  Saccadic undershoot is not inevitable: Saccades can be accurate , 1986, Vision Research.

[56]  S. B. Stevenson,et al.  Dependence of visual suppression on the amplitudes of saccades and blinks , 1986, Vision Research.

[57]  Mitsuo Ikeda,et al.  Temporal impulse response , 1986, Vision Research.

[58]  S. Petersen,et al.  Saccade-related and visual activities in the pulvinar nuclei of the behaving rhesus monkey , 1986, Experimental Brain Research.

[59]  R. Shapley,et al.  The primate retina contains two types of ganglion cells, with high and low contrast sensitivity. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[60]  H. Spekreijse,et al.  The “silent substitution” method in visual research , 1982, Vision Research.

[61]  J D Victor,et al.  How the contrast gain control modifies the frequency responses of cat retinal ganglion cells. , 1981, The Journal of physiology.

[62]  R. Carpenter,et al.  Movements of the Eyes , 1978 .

[63]  David A. Robinson,et al.  Miniature eye movements of fixation in rhesus monkey , 1975, Vision Research.

[64]  W Singer,et al.  Correlation between the effects of brain stem stimulation and saccadic eye movements on transmission in the cat lateral geniculate nucleus. , 1974, Brain research.

[65]  J. Bartlett,et al.  Mesencephalic control of lateral geniculate nucleus in primates. I. Electrophysiology , 1973, Experimental Brain Research.

[66]  R H Wurtz,et al.  Comparison of effects of eye movements and stimulus movements on striate cortex neurons of the monkey. , 1969, Journal of neurophysiology.

[67]  B. Cohen,et al.  Relationship of electrical activity in pontine reticular formation and lateral geniculate body to rapid eye movements. , 1968, Journal of neurophysiology.

[68]  G. W. Beeler,et al.  Visual threshold changes resulting from spontaneous saccadic eye movements. , 1967, Vision research.

[69]  D. Hubel,et al.  Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey. , 1966, Journal of neurophysiology.

[70]  C. Hunt,et al.  Properties of frog sympathetic neurons in normal ganglia and after axon section. , 1966, Journal of Neurophysiology.

[71]  H B BARLOW,et al.  Increment thresholds at low intensities considered as signal/noise discriminations , 1957, The Journal of physiology.

[72]  F. Lo,et al.  A study of neuronal circuitry mediating the saccadic suppression in the rabbit , 2004, Experimental Brain Research.

[73]  D. Robinson,et al.  Motion of the eye immediately after a saccade , 2004, Experimental Brain Research.

[74]  R. Masland,et al.  Spatial scale and cellular substrate of contrast adaptation by retinal ganglion cells , 2001, Nature Neuroscience.

[75]  R. Reid,et al.  The koniocellular pathway in primate vision. , 2000, Annual review of neuroscience.

[76]  John H. R. Maunsell,et al.  How parallel are the primate visual pathways? , 1993, Annual review of neuroscience.

[77]  H C Pape,et al.  Excitatory and differential disinhibitory actions of acetylcholine in the lateral geniculate nucleus of the cat. , 1986, The Journal of physiology.

[78]  U Büttner,et al.  Influence of saccadic eye movements on unit activity in simian lateral geniculate and pregeniculate nuclei. , 1973, Journal of neurophysiology.