Methods used for evaluation of actual power generating thermal cycles and comparing them

Abstract In this study, thermodynamic optimization criteria used for assessing thermal engines are investigated and compared. The Purpose of this is to determine the most advantageous criteria. An irreversible Carnot cycle is analyzed by using five different methods and results are compared. According to calculations, the ecological function criterion (ECF) is defined as the most convenient optimization method. Although, its work output is less than the maximum work criteria and maximum available work (MAW), it has advantageous in terms of entropy generation and first law efficiency. In addition, ecological coefficient of performance (ECOP) and exergetic performance criteria (EPC) values provide minimum entropy generation and maximum efficiency at their maximum, however, their work output is very small. ECF obtains its maximum values at x = 0.488 (377.175 kW) for endoreversible cycle and at x = 0.477 (329.812 kW) for irreversible cycle. For these reasons, ECF is suggested as the best optimization criteria.

[1]  Yasin Ust,et al.  Performance analysis and optimization of an irreversible dual-cycle based on an ecological coefficient of performance criterion , 2005 .

[2]  Yasin Ust,et al.  Performance optimization of irreversible refrigerators based on a new thermo-ecological criterion , 2007 .

[3]  S. C. Kaushik,et al.  Ecological optimization and performance study of irreversible Stirling and Ericsson heat engines , 2002 .

[4]  Bjarne Andresen,et al.  Availability for finite-time processes. General theory and a model , 1983 .

[5]  Emin Açıkkalp,et al.  Models for optimum thermo-ecological criteria of actual thermal cycles , 2013 .

[6]  Fengrui Sun,et al.  Exergy-based ecological optimization for a generalized irreversible Carnot heat-pump , 2007 .

[7]  Fengrui Sun,et al.  Extremal work of an endoreversible system with two finite thermal capacity reservoirs , 2009 .

[8]  Yasin Ust,et al.  Optimization of a dual cycle cogeneration system based on a new exergetic performance criterion , 2007 .

[9]  Chih Wu,et al.  Power optimization of a finite-time Carnot heat engine , 1988 .

[10]  Shaojun Xia,et al.  Power-optimization of non-ideal energy converters under generalized convective heat transfer law via , 2011 .

[11]  R. Stephen Berry,et al.  Finite‐time thermodynamics: Exergy and optimization of time‐constrained processes , 1994 .

[12]  Lingen Chen,et al.  Effect of Heat Transfer Law on the Ecological Optimization of a Generalized Irreversible Carnot Engine , 2005, Open Syst. Inf. Dyn..

[13]  S. C. Kaushik,et al.  Ecological optimization and parametric study of irreversible Stirling and Ericsson heat pumps , 2002 .

[14]  Fengrui Sun,et al.  Effects of mass transfer laws on finite time exergy , 2010 .

[15]  Yasin Ust,et al.  Performance analysis and optimization of irreversible air refrigeration cycles based on ecological coefficient of performance criterion , 2009 .

[16]  Yasin Ust,et al.  Ecological coefficient of performance (ECOP) optimization for an irreversible Brayton heat engine with variable-temperature thermal reservoirs , 2006 .

[17]  Lingen Chen,et al.  Power, efficiency, entropy-generation rate and ecological optimization for a class of generalized irreversible universal heat-engine cycles , 2007 .

[18]  Jun Li,et al.  Ecological optimization of a generalized irreversible Carnot refrigerator in the case of Q∝ (Δ T n ) m , 2012 .

[19]  Fengrui Sun,et al.  Maximum work output of multistage continuous Carnot heat engine system with finite reservoirs of thermal capacity and radiation between heat source and working fluid , 2010 .

[20]  Fengrui Sun,et al.  Optimal heat conductance distribution and optimal intercooling pressure ratio for power optimisation of irreversible closed intercooled regenerated Brayton cycle , 2006 .

[21]  Cha'o-Kuang Chen,et al.  The ecological optimization of an irreversible Carnot heat engine , 1997 .

[22]  Yasin Ust,et al.  Optimization of a regenerative gas-turbine cogeneration system based on a new exergetic performance criterion: Exergetic performance coefficient , 2007 .

[23]  Jun Li,et al.  Ecological performance of an endoreversible Carnot heat engine with complex heat transfer law , 2011 .

[24]  Fengrui Sun,et al.  Exergy-based ecological optimization of linear phenomenological heat-transfer law irreversible Carnot-engines , 2006 .

[25]  Guoxing Lin,et al.  Ecological optimization criterion for an irreversible three-heat-source refrigerator , 2000 .

[26]  Fengrui Sun,et al.  Ecological optimisation of an irreversible-closed ICR gas turbine cycle , 2011 .

[27]  Stanislaw Sieniutycz,et al.  Carnot problem of maximum work from a finite resource interacting with environment in a finite time , 1999 .

[28]  Yasin Ust,et al.  Effect of regeneration on the thermo-ecological performance analysis and optimization of irreversible air refrigerators , 2010 .

[29]  F. Curzon,et al.  Efficiency of a Carnot engine at maximum power output , 1975 .

[30]  Feng Wu,et al.  Ecological Optimization Performance of An Irreversible Quantum Otto Cycle Working with an Ideal Fermi Gas , 2006, Open Syst. Inf. Dyn..

[31]  H. H. Erdem,et al.  An analysis of SOFC/GT CHP system based on exergetic performance criteria , 2008 .

[32]  Hasan Yamik,et al.  Limits and Optimization of Power Input or Output of Actual Thermal Cycles , 2013, Entropy.

[33]  Fengrui Sun,et al.  Finite time exergy with generalised heat transfer law , 2012 .

[34]  Fengrui Sun,et al.  Exergy-based ecological optimization for a generalized irreversible Carnot refrigerator , 2006 .

[35]  Fengrui Sun,et al.  Exergy-based ecological optimal performance for a universal endoreversible thermodynamic cycle , 2007 .

[36]  Yanming Kang,et al.  Performance optimization for an irreversible four-temperature-level absorption heat pump , 2008 .

[37]  Stanislaw Sieniutycz,et al.  Hamilton-Jacobi-Bellman theory of dissipative thermal availability , 1997 .

[38]  L Chen,et al.  THE FUNDAMENTAL OPTIMAL RELATION AND THE BOUNDS OF POWER OUTPUT AND EFFICIENCY FOR AN IRREVERSIBLE CARNOT ENGINE , 1995 .

[39]  Fengrui Sun,et al.  Ecological optimization for generalized irreversible Carnot refrigerators , 2005 .

[40]  Stanislaw Sieniutycz,et al.  Generalized Carnot problem of maximum work in finite time via Hamilton–Jacobi–Bellman theory , 1998 .

[41]  Stanislaw Sieniutycz,et al.  Finite time generalization of thermal exergy , 1998 .

[42]  Ali Volkan Akkaya,et al.  Analysis of a vapour compression refrigeration system via exergetic performance coefficient criterion , 2011 .

[43]  Jun Li,et al.  Optimum work in real systems with a class of finite thermal capacity reservoirs , 2009, Math. Comput. Model..

[44]  Zijun Yan,et al.  Comment on ‘‘An ecological optimization criterion for finite‐time heat engines’’ [J. Appl. Phys. 69, 7465 (1991)] , 1993 .

[45]  Yasin Ust,et al.  Performance analysis of an irreversible Brayton heat engine based on ecological coefficient of performance criterion , 2006 .

[46]  Fengrui Sun,et al.  Ecological optimization for generalized irreversible Carnot engines , 2004 .

[47]  Lingen Chen,et al.  Universal ecological performance for endo-reversible heat engine cycles , 2006 .

[48]  Yasin Ust,et al.  The effects of intercooling and regeneration on the thermo-ecological performance analysis of an irreversible-closed Brayton heat engine with variable-temperature thermal reservoirs , 2006 .

[49]  Fengrui Sun,et al.  Effect of a complex generalised heat transfer law on the ecological performance of an endoreversible Carnot heat pump , 2009 .

[50]  Fengrui Sun,et al.  The ecological optimization of a generalized irreversible Carnot heat pump for a generalized heat transfer law , 2005 .

[51]  L. Chen,et al.  Ecological optimisation of a generalised irreversible Carnot refrigerator for a generalised heat transfer law , 2007 .

[52]  Hasan Hüseyin Erdem,et al.  Exergetic performance coefficient analysis of a simple fuel cell system , 2007 .

[53]  Lingen Chen,et al.  The ecological optimisation of a generalised irreversible Carnot engine for a generalised heat transfer law , 2003 .

[54]  Fengrui Sun,et al.  Ecological optimization of an irreversible harmonic oscillators Carnot heat engine , 2009 .

[55]  Fengrui Sun,et al.  Ecological performance of an endoreversible Carnot refrigerator with complex heat transfer law , 2011 .

[56]  Yasin Ust,et al.  Ecological coefficient of performance (ECOP) optimization for generalized irreversible Carnot heat engines , 2005 .

[57]  Fernando Angulo-Brown,et al.  An ecological optimization criterion for finite‐time heat engines , 1991 .

[58]  Fengrui Sun,et al.  Exergy-based ecological optimisation for an endoreversible Brayton refrigeration cycle , 2006 .

[59]  Jincan Chen THE MAXIMUM POWER OUTPUT AND MAXIMUM EFFICIENCY OF AN IRREVERSIBLE CARNOT HEAT ENGINE , 1994 .

[60]  Yasin Ust,et al.  Ecological performance analysis of an endoreversible regenerative Brayton heat-engine , 2005 .

[61]  Fengrui Sun,et al.  Effect of heat transfer law on the ecological optimisation of a generalised irreversible Carnot heat pump , 2005 .

[62]  Yasin Ust,et al.  Ecological coefficient of performance analysis and optimization of an irreversible regenerative-Brayton heat engine , 2006 .