Mathematical modelling of ambient air-breathing fuel cells for portable devices

Competitive costs, instant recharge, and high energy density make fuel cells ideal for supplanting batteries in portable electronic devices. In this study, we derive a semi-analytical model to elucidate the transport of ions, heat and mass in air-breathing fuel cells. The model includes an empirical correlation for membrane conductivity that improves accuracy when modelling membrane dry-out. A detailed comparison with experimental data demonstrates that the model accurately predicts fuel cell performance through detailed accounting of catalyst layer specifications, including variable width, and electrochemical parameters. A comprehensive parametric study resolves the trends associated with a variety of design specifications and operating conditions. Membrane dry-out is identified as the primary limitation on current density, and is shown to be strongly dependent on heat transfer. The study also identifies some unique effects of coupling between ambient air temperature and humidity on the performance of air-breathing fuel cells.

[1]  T. Nguyen,et al.  An Along‐the‐Channel Model for Proton Exchange Membrane Fuel Cells , 1998 .

[2]  Ralph E. White,et al.  A water and heat management model for proton-exchange-membrane fuel cells , 1993 .

[3]  A. Kornyshev,et al.  Characteristic length of fuel and oxygen consumption in feed channels of polymer electrolyte fuel cells , 2001 .

[4]  J. Newman,et al.  Mass Transport in Gas‐Diffusion Electrodes: A Diagnostic Tool for Fuel‐Cell Cathodes , 1998 .

[5]  Mark W. Verbrugge,et al.  A Mathematical Model of the Solid‐Polymer‐Electrolyte Fuel Cell , 1992 .

[6]  Datong Song,et al.  The role of membrane ion exchange capacity on membrane|gas diffusion electrode interfaces: a half-fuel cell electrochemical study , 2004 .

[7]  Frano Barbir,et al.  An Analytical Solution of a Half‐Cell Model for PEM Fuel Cells , 2000 .

[8]  Suk Won Cha,et al.  The role of ambient conditions on the performance of a planar, air-breathing hydrogen PEM fuel cell , 2006 .

[9]  A. Parthasarathy,et al.  Pressure Dependence of the Oxygen Reduction Reaction at the Platinum Microelectrode/Nafion Interface: Electrode Kinetics and Mass Transport , 1992 .

[10]  K. Karan,et al.  An improved two-dimensional agglomerate cathode model to study the influence of catalyst layer structural parameters , 2005 .

[11]  Xianguo Li,et al.  Composition and performance modelling of catalyst layer in a proton exchange membrane fuel cell , 1999 .

[12]  C. Hebling,et al.  Stability of planar PEMFC in Printed Circuit Board technology , 2004 .

[13]  Jon G. Pharoah,et al.  Computational analysis of heat and mass transfer in a micro-structured PEMFC cathode , 2006 .

[14]  M. Valentini,et al.  Analytical Pore Scale Modeling of the Reactive Regions of Polymer Electrolyte Fuel Cells , 2003 .

[15]  Trung Van Nguyen,et al.  Three-dimensional effects of liquid water flooding in the cathode of a PEM fuel cell , 2003 .

[16]  Jesse S. Wainright,et al.  Microfabricated fuel cells , 2003 .

[17]  B. Wetton,et al.  Water Management in PEM Fuel Cells , 2004 .

[18]  Charles W. Tobias,et al.  On the Conductivity of Dispersions , 1959 .

[19]  G. Sasikumar,et al.  Optimum Nafion content in PEM fuel cell electrodes , 2004 .

[20]  Narispur V. Suryanarayana Engineering Heat Transfer , 1994 .

[21]  Edward L Cussler,et al.  Diffusion: Mass Transfer in Fluid Systems , 1984 .

[22]  Sirivatch Shimpalee,et al.  Predicting water and current distributions in a commercial-size PEMFC , 2004 .

[23]  S. Litster,et al.  PEM fuel cell electrodes , 2004 .

[24]  H. Reichl,et al.  Development of a planar micro fuel cell with thin film and micro patterning technologies , 2004 .

[25]  Ned Djilali,et al.  THREE-DIMENSIONAL COMPUTATIONAL ANALYSIS OF TRANSPORT PHENOMENA IN A PEM FUEL CELL , 2002 .

[26]  Ned Djilali,et al.  Transport Phenomena in Polymer Electrolyte Membranes II. Binary Friction Membrane Model , 2005 .

[27]  Ned Djilali,et al.  Computational model of a PEM fuel cell with serpentine gas flow channels , 2004 .

[28]  Ned Djilali,et al.  Three-dimensional computational analysis of transport phenomena in a PEM fuel cell—a parametric study , 2003 .

[29]  Peter Lund,et al.  Evaluation of planar free-breathing polymer electrolyte membrane fuel cell design , 2004 .

[30]  Sonia Tulyani,et al.  Steady-state multiplicity in the autohumidification polymer electrolyte membrane fuel cell , 2003 .

[31]  A. A. Kulikovsky,et al.  Semi-analytical 1D + 1D model of a polymer electrolyte fuel cell , 2004 .

[32]  Hyunchul Ju,et al.  Experimental Validation of a PEM Fuel Cell Model by Current Distribution Data , 2004 .

[33]  P. Ekdunge,et al.  Proton Conductivity of Nafion 117 as Measured by a Four‐Electrode AC Impedance Method , 1996 .

[34]  Chaoyang Wang,et al.  Three-dimensional analysis of transport and electrochemical reactions in polymer electrolyte fuel cells , 2004 .

[35]  S. Litster Mathematical modelling of fuel cells for portable devices , 2005 .

[36]  G.J.M. Janssen,et al.  Water transport in the proton-exchange-membrane fuel cell: measurements of the effective drag coefficient , 2001 .

[37]  Michael Eikerling,et al.  Functionally graded cathode catalyst layers for polymer electrolyte fuel cells - I. Theoretical modeling , 2004 .

[38]  T. Springer,et al.  Polymer Electrolyte Fuel Cell Model , 1991 .

[39]  Lin Wang,et al.  Performance studies of PEM fuel cells with interdigitated flow fields , 2004 .

[40]  Hirofumi Daiguji,et al.  The Structure of Catalyst Layers and Cell Performance in Proton Exchange Membrane Fuel Cells , 2004 .

[41]  Christopher K. Dyer Fuel cells for portable applications , 2002 .

[42]  Geping Yin,et al.  Effective protonic and electronic conductivity of the catalyst layers in proton exchange membrane fuel cells , 2004 .

[43]  Z. Qi,et al.  Low Pt loading high performance cathodes for PEM fuel cells , 2003 .

[44]  A. A. Kornyshev,et al.  Modelling the performance of the cathode catalyst layer of polymer electrolyte fuel cells , 1998 .

[45]  S. Mukerjee,et al.  Oxygen reduction and transport characteristics at a platinum and alternative proton conducting membrane interface , 2004 .

[46]  Keith Promislow,et al.  TRANSPORT PHENOMENA IN THE POROUS CATHODE OF A PROTON EXCHANGE MEMBRANE FUEL CELL , 2002 .

[47]  J. C. Amphlett Performance Modeling of the Ballard Mark IV Solid Polymer Electrolyte Fuel Cell , 1995 .

[48]  T. Fuller,et al.  Water and Thermal Management in Solid‐Polymer‐Electrolyte Fuel Cells , 1993 .

[49]  Steven Holdcroft,et al.  Temperature and pressure dependence of O2 reduction at Pt | Nafion® 117 and Pt | BAM® 407 interfaces , 1999 .

[50]  R. Datta,et al.  Modeling of Conductive Transport in Proton-Exchange Membranes for Fuel Cells , 2000 .

[51]  Ned Djilali,et al.  CFD-based modelling of proton exchange membrane fuel cells , 2005 .

[52]  Andreas Schmitz,et al.  Modeling Planar and Self-Breathing Fuel Cells for Use in Electronic Devices , 2004 .