An overview of solar thermochemical hydrogen, carbon nano-materials and metals production technologies

[1]  T. Kodama High-temperature solar chemistry for converting solar heat to chemical fuels , 2003 .

[2]  Aldo Steinfeld,et al.  The solar thermal decarbonization of natural gas , 2001 .

[3]  M. S. de Vries,et al.  Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls , 1993, Nature.

[4]  D. Yogi Goswami,et al.  Principles of Solar Engineering , 1978 .

[5]  N. Muradov,et al.  From hydrocarbon to hydrogen–carbon to hydrogen economy , 2005 .

[6]  S. Takenaka,et al.  Formation of filamentous carbons over supported Fe catalysts through methane decomposition , 2004 .

[7]  Sanford Klein,et al.  A method of simulation of solar processes and its application , 1975 .

[8]  Alan W. Weimer,et al.  A cavity-receiver containing a tubular absorber for high-temperature thermochemical processing using concentrated solar energy , 2008 .

[9]  Alan W. Weimer,et al.  Solar-thermal dissociation of methane in a fluid-wall aerosol flow reactor , 2004 .

[10]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[11]  W. H. Beattie,et al.  High-temperature solar pyrolysis of coal , 1983 .

[12]  Diameter control of multiwalled carbon nanotubes using experimental strategies , 2005 .

[13]  Anton Meier,et al.  Solar Fuels and Materials , 2004 .

[14]  M. Romero,et al.  Hydrogen production by steam-gasification of petroleum coke using concentrated solar power—I. Thermodynamic and kinetic analyses , 2005 .

[15]  F. Wei,et al.  Enhanced production of carbon nanotubes: combination of catalyst reduction and methane decomposition , 2004 .