Authoring landscapes by combining ecosystem and terrain erosion simulation

We introduce a novel framework for interactive landscape authoring that supports bi-directional feedback between erosion and vegetation simulation. Vegetation and terrain erosion have strong mutual impact and their interplay influences the overall realism of virtual scenes. Despite their importance, these complex interactions have been neglected in computer graphics. Our framework overcomes this by simulating the effect of a variety of geomorphological agents and the mutual interaction between different material and vegetation layers, including rock, sand, humus, grass, shrubs, and trees. Users are able to exploit these interactions with an authoring interface that consistently shapes the terrain and populates it with details. Our method, validated through side-by-side comparison with real terrains, can be used not only to generate realistic static landscapes, but also to follow the temporal evolution of a landscape over a few centuries.

[1]  Marie-Paule Cani,et al.  EcoBrush: Interactive Control of Visually Consistent Large‐Scale Ecosystems , 2017, Comput. Graph. Forum.

[2]  Eric Galin,et al.  Efficient modeling of entangled details for natural scenes , 2016, Comput. Graph. Forum.

[3]  Eric Galin,et al.  Sparse representation of terrains for procedural modeling , 2016, Comput. Graph. Forum.

[4]  Marie-Paule Cani,et al.  Large Scale Terrain Generation from Tectonic Uplift and Fluvial Erosion , 2016, Comput. Graph. Forum.

[5]  Kenny Mitchell,et al.  Guided Ecological Simulation for Artistic Editing of Plant Distributions in Natural Scenes , 2015 .

[6]  Bedrich Benes,et al.  Terrain Modelling from Feature Primitives , 2015, Comput. Graph. Forum.

[7]  Pierre Poulin,et al.  WorldBrush , 2015, ACM Trans. Graph..

[8]  James E. Gain,et al.  Parallel, Realistic and Controllable Terrain Synthesis , 2015, Comput. Graph. Forum.

[9]  Rafael Bidarra,et al.  A Survey on Procedural Modelling for Virtual Worlds , 2014, Comput. Graph. Forum.

[10]  Bedrich Benes,et al.  Terrain generation using procedural models based on hydrology , 2013, ACM Trans. Graph..

[11]  Eugene Ch'ng,et al.  Model resolution in complex systems simulation: Agent preferences, behavior, dynamics and n-tiered networks , 2013, Simul..

[12]  Francis Bond,et al.  Extracting Semantic Transfer Rules from Parallel Corpora with SMT Phrase Aligners , 2012, SSST@ACL.

[13]  Bedrich Benes,et al.  Large-Scale Physics-Based Terrain Editing Using Adaptive Tiles on the GPU , 2011, IEEE Computer Graphics and Applications.

[14]  Daniel G. Aliaga,et al.  Urban ecosystem design , 2011, SI3D.

[15]  Oliver Deussen,et al.  Digital Design of Nature - Computer Generated Plants and Organics , 2010, X.media.publishing.

[16]  Eric Galin,et al.  Arches: a Framework for Modeling Complex Terrains , 2009, Comput. Graph. Forum.

[17]  Bedrich Benes,et al.  Interactive Modeling of Virtual Ecosystems , 2009, NPH.

[18]  Bedrich Benes,et al.  Hydraulic Erosion Using Smoothed Particle Hydrodynamics , 2009, Comput. Graph. Forum.

[19]  Bedrich Benes,et al.  Interactive terrain modeling using hydraulic erosion , 2008, SCA '08.

[20]  Suzana Dragicevic,et al.  Design and implementation of an integrated GIS-based cellular automata model to characterize forest fire behaviour , 2008 .

[21]  Xing Mei,et al.  Fast Hydraulic Erosion Simulation and Visualization on GPU , 2007, 15th Pacific Conference on Computer Graphics and Applications (PG'07).

[22]  Jie Xu,et al.  Computer-Generated Papercutting , 2007, 15th Pacific Conference on Computer Graphics and Applications (PG'07).

[23]  James M. Rehg,et al.  Terrain Synthesis from Digital Elevation Models , 2007, IEEE Transactions on Visualization and Computer Graphics.

[24]  Simon Scheiter,et al.  Effects of four decades of fire manipulation on woody vegetation structure in Savanna. , 2007, Ecology.

[25]  Timothy C. Coburn,et al.  Environmental Soil-Landscape Modeling: Geographic Information Technologies and Pedometrics , 2007 .

[26]  Hisashi Sato,et al.  SEIB–DGVM: A new Dynamic Global Vegetation Model using a spatially explicit individual-based approach , 2007 .

[27]  Bedrich Benes,et al.  Hydraulic erosion , 2006, Comput. Animat. Virtual Worlds.

[28]  Markus Wacker,et al.  Interactive physically based Fluid and Erosion Simulation , 2005, NPH.

[29]  Bedrich Benes,et al.  Modeling virtual ecosystems with the proactive guidance of agents , 2003, Proceedings 11th IEEE International Workshop on Program Comprehension.

[30]  Bedrich Benes,et al.  Layered data representation for visual simulation of terrain erosion , 2001, Proceedings Spring Conference on Computer Graphics.

[31]  Norishige Chiba,et al.  An erosion model based on velocity fields for the visual simulation of mountain scenery , 1998, Comput. Animat. Virtual Worlds.

[32]  Radomír Mech,et al.  Realistic modeling and rendering of plant ecosystems , 1998, SIGGRAPH.

[33]  Michael A. Ellis,et al.  Landsliding and the evolution of normal‐fault‐bounded mountains , 1998 .

[34]  M. Sambridge,et al.  Modelling landscape evolution on geological time scales: a new method based on irregular spatial discretization , 1997 .

[35]  I. C. Prentice,et al.  An integrated biosphere model of land surface processes , 1996 .

[36]  F. Kenton Musgrave,et al.  The synthesis and rendering of eroded fractal terrains , 1989, SIGGRAPH.

[37]  Gregory M. Nielson,et al.  Terrain simulation using a model of stream erosion , 1988, SIGGRAPH.

[38]  송형근,et al.  연속제강공정의 Simulation Model , 1986 .

[39]  Jules Bloomenthal,et al.  Modeling the mighty maple , 1985, SIGGRAPH.

[40]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[41]  A. Lindenmayer Mathematical models for cellular interactions in development. I. Filaments with one-sided inputs. , 1968, Journal of theoretical biology.

[42]  Jasper Knight,et al.  Lightning as a geomorphic agent on mountain summits: Evidence from southern Africa , 2014 .

[43]  Ivan Viola,et al.  Modeling Terrains and Subsurface Geology , 2013, Eurographics.

[44]  W. Stuerzlinger,et al.  An Algorithm for Automated Fractal Terrain Deformation , 2005 .

[45]  Bedrich Benes,et al.  Visual Simulation of Hydraulic Erosion , 2002, WSCG.

[46]  Brendan Lane,et al.  Generating Spatial Distributions for Multilevel Models of Plant Communities , 2002, Graphics Interface.

[47]  P. Prusinkiewicz,et al.  A Fractal Model of Mountains with Rivers , 2000 .

[48]  B. Cade,et al.  Estimating effects of limiting factors with regression quantiles , 1999 .

[49]  Wolfgang Cramer,et al.  A simulation model for the transient effects of climate change on forest landscapes , 1993 .

[50]  I. Colinprentice,et al.  A simulation model for the transient effects of climate change on forest landscapes , 1993 .

[51]  Przemyslaw Prusinkiewicz,et al.  Graphical modeling using L-systems , 1990 .

[52]  A. Lindenmayer,et al.  The Algorithmic Beauty of Plants , 1990, The Virtual Laboratory.

[53]  A. Lindenmayer,et al.  The Algorithmic Beauty of Plants , 1990, The Virtual Laboratory.

[54]  Paul Cox,et al.  A survey of , 1989 .

[55]  R. Voss Random Fractal Forgeries , 1985 .

[56]  Aristid Lindenmayer,et al.  Mathematical Models for Cellular Interactions in Development , 1968 .

[57]  S S I T C H,et al.  Evaluation of Ecosystem Dynamics, Plant Geography and Terrestrial Carbon Cycling in the Lpj Dynamic Global Vegetation Model , 2022 .