Modernizing PHCpack through phcpy

PHCpack is a large software package for solving systems of polynomial equations. The executable phc is menu driven and file oriented. This paper describes the development of phcpy, a Python interface to PHCpack. Instead of navigating through menus, users of phcpy solve systems in the Python shell or via scripts. Persistent objects replace intermediate files.

[1]  William Gropp,et al.  Mpi---the complete reference: volume 1 , 1998 .

[2]  E. Allgower,et al.  Numerical path following , 1997 .

[3]  KimSunyoung,et al.  PHoM – a Polyhedral Homotopy Continuation Method for Polynomial Systems , 2004 .

[4]  Andrew J. Sommese,et al.  The numerical solution of systems of polynomials - arising in engineering and science , 2005 .

[5]  Tien-Yien Li Numerical Solution of Polynomial Systems by Homotopy Continuation Methods , 2003 .

[6]  L. Watson Numerical linear algebra aspects of globally convergent homotopy methods , 1986 .

[7]  Masayuki Noro,et al.  OpenXM — an open system to integrate mathematical software (poster session) , 2001 .

[8]  Jack Dongarra,et al.  MPI - The Complete Reference: Volume 1, The MPI Core , 1998 .

[9]  Andrew J. Sommese,et al.  Numerical Irreducible Decomposition Using PHCpack , 2003, Algebra, Geometry, and Software Systems.

[10]  Masha Sosonkina,et al.  Algorithm 777: HOMPACK90: a suite of Fortran 90 codes for globally convergent homotopy algorithms , 1997, TOMS.

[11]  Layne T. Watson,et al.  Algorithm 652: HOMPACK: a suite of codes for globally convergent homotopy algorithms , 1987, TOMS.

[12]  Layne T. Watson Probability-one homotopies in computational science , 2002 .

[13]  Eugene L. Allgower,et al.  Continuation and path following , 1993, Acta Numerica.

[14]  Jan Verschelde Polynomial homotopy continuation with PHCpack , 2011, ACCA.

[15]  Jonathan M. Borwein,et al.  SIAM: “Setting the Default to Reproducible” in Computational Science Research , 2013 .

[16]  A. Morgan Solving Polynomial Systems Using Continuation for Engineering and Scientific Problems , 1987 .

[17]  Jan Verschelde,et al.  Parallel Implementation of a Subsystem-by-Subsystem Solver , 2008, 2008 22nd International Symposium on High Performance Computing Systems and Applications.

[18]  Jan Verschelde,et al.  Computing feedback laws for linear systems with a parallel pieri homotopy , 2004, Workshops on Mobile and Wireless Networking/High Performance Scientific, Engineering Computing/Network Design and Architecture/Optical Networks Control and Management/Ad Hoc and Sensor Networks/Compil.

[19]  Jan Verschelde,et al.  Computing critical points of polynomial systems using phcpack and python , 2008 .

[20]  Xiaoye S. Li,et al.  Algorithms for quad-double precision floating point arithmetic , 2000, Proceedings 15th IEEE Symposium on Computer Arithmetic. ARITH-15 2001.

[21]  S. Babson,et al.  Emergent Design , 2007 .

[22]  Tsung-Lin Lee,et al.  HOM4PS-2.0: a software package for solving polynomial systems by the polyhedral homotopy continuation method , 2008, Computing.

[23]  Sosonkina Maria,et al.  HOMPACK90: A Suite of FORTRAN 90 Codes for Globally Convergent Homotopy Algorithms , 1996 .

[24]  Anton Leykin,et al.  Numerical algebraic geometry , 2020, Applications of Polynomial Systems.

[25]  Scott L. Bain Emergent Design: The Evolutionary Nature of Professional Software Development (paperback) , 2008 .

[26]  Jan Verschelde,et al.  Regeneration, local dimension, and applications in numerical algebraic geometry , 2009 .

[27]  Jan Verschelde,et al.  PHClab: A MATLAB/Octave Interface to PHCpack , 2008 .

[28]  Jonathan D. Hauenstein,et al.  Software for numerical algebraic geometry: a paradigm and progress towards its implementation , 2008 .

[29]  Yan Zhuang,et al.  Parallel implementation of the polyhedral homotopy method , 2006, 2006 International Conference on Parallel Processing Workshops (ICPPW'06).

[30]  Akiko Takeda,et al.  PHoM – a Polyhedral Homotopy Continuation Method for Polynomial Systems , 2004, Computing.

[31]  Andrew J. Sommese,et al.  Numerical Homotopies to Compute Generic Points on Positive Dimensional Algebraic Sets , 2000, J. Complex..

[32]  Jan Verschelde,et al.  Algorithm 795: PHCpack: a general-purpose solver for polynomial systems by homotopy continuation , 1999, TOMS.

[33]  E. Allgower,et al.  Introduction to Numerical Continuation Methods , 1987 .

[34]  Anton Leykin,et al.  Decomposing solution sets of polynomial systems: a new parallel monodromy breakup algorithm , 2005, Int. J. Comput. Sci. Eng..

[35]  J. Verschelde,et al.  Numerical Homotopy Algorithms for Satellite Trajectory Control by Pole Placement 1 , 2002 .

[36]  L. T. Watson,et al.  Globally convergent homotopy methods: a tutorial , 1989, Conference on Numerical Ordinary Differential Equations.

[37]  Anton Leykin,et al.  Interfacing with the Numerical Homotopy Algorithms in PHCpack , 2006, ICMS.

[38]  Jan Verschelde,et al.  Computing dynamic output feedback laws , 2004, IEEE Transactions on Automatic Control.

[39]  Jan Verschelde,et al.  PHCpack in Macaulay2 , 2011, ArXiv.

[40]  Anton Leykin,et al.  PHCmaple : A Maple Interface to the Numerical Homotopy Algorithms in PHCpack ∗ , 2004 .

[41]  Anton Leykin,et al.  Factoring solution sets of polynomial systems in parallel , 2005, 2005 International Conference on Parallel Processing Workshops (ICPPW'05).

[42]  Anton Leykin,et al.  Parallel Homotopy Algorithms to Solve Polynomial Systems , 2006, ICMS.

[43]  Tangan Gao,et al.  Algorithm 846: MixedVol: a software package for mixed-volume computation , 2005, TOMS.