Lower Bounds on Matrix Factorization Ranks via Noncommutative Polynomial Optimization

We use techniques from (tracial noncommutative) polynomial optimization to formulate hierarchies of semidefinite programming lower bounds on matrix factorization ranks. In particular, we consider the nonnegative rank, the positive semidefinite rank, and their symmetric analogs: the completely positive rank and the completely positive semidefinite rank. We study convergence properties of our hierarchies, compare them extensively to known lower bounds, and provide some (numerical) examples.

[1]  Igor Klep,et al.  The tracial moment problem and trace-optimization of polynomials , 2013, Math. Program..

[2]  Alan Edelman,et al.  Julia: A Fresh Approach to Numerical Computing , 2014, SIAM Rev..

[3]  Charles R. Johnson,et al.  Completely positive matrices associated with M-matrices , 1994 .

[4]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[5]  Monique Laurent,et al.  Conic Approach to Quantum Graph Parameters Using Linear Optimization Over the Completely Positive Semidefinite Cone , 2013, SIAM J. Optim..

[6]  Samuel Fiorini,et al.  Combinatorial bounds on nonnegative rank and extended formulations , 2011, Discret. Math..

[7]  David E. Roberson,et al.  Quantum and non-signalling graph isomorphisms , 2016, J. Comb. Theory B.

[8]  Samuel Fiorini,et al.  Approximation Limits of Linear Programs (Beyond Hierarchies) , 2015, Math. Oper. Res..

[9]  Antonios Varvitsiotis,et al.  Correlation matrices, Clifford algebras, and completely positive semidefinite rank , 2017, Linear and Multilinear Algebra.

[10]  H. W. Turnbull,et al.  Lectures on Matrices , 1934 .

[11]  Monique Laurent,et al.  Matrices With High Completely Positive Semidefinite Rank , 2016, 1605.00988.

[12]  Stefano Pironio,et al.  Convergent Relaxations of Polynomial Optimization Problems with Noncommuting Variables , 2009, SIAM J. Optim..

[13]  Jiawang Nie,et al.  Symmetric Tensor Nuclear Norms , 2016, SIAM J. Appl. Algebra Geom..

[14]  Rekha R. Thomas,et al.  Lifts of Convex Sets and Cone Factorizations , 2011, Math. Oper. Res..

[15]  Nicolas Gillis,et al.  On the Geometric Interpretation of the Nonnegative Rank , 2010, 1009.0880.

[16]  Samuel Burer,et al.  On the copositive representation of binary and continuous nonconvex quadratic programs , 2009, Math. Program..

[17]  Thomas Rothvoß,et al.  The matching polytope has exponential extension complexity , 2013, STOC.

[18]  Jack Edmonds,et al.  Maximum matching and a polyhedron with 0,1-vertices , 1965 .

[19]  João Gouveia,et al.  On Ranks of Regular Polygons , 2017, SIAM J. Discret. Math..

[20]  Rekha R. Thomas,et al.  Polytopes of Minimum Positive Semidefinite Rank , 2012, Discret. Comput. Geom..

[21]  Mario Berta,et al.  Quantum Bilinear Optimization , 2015, SIAM J. Optim..

[22]  E. Haviland,et al.  On the Momentum Problem for Distribution Functions in More Than One Dimension. II , 1935 .

[23]  Jiawang Nie,et al.  The $${\mathcal {A}}$$A-Truncated $$K$$K-Moment Problem , 2012, Found. Comput. Math..

[24]  M. Laurent Sums of Squares, Moment Matrices and Optimization Over Polynomials , 2009 .

[25]  Prasad Raghavendra,et al.  Lower Bounds on the Size of Semidefinite Programming Relaxations , 2014, STOC.

[26]  Antonios Varvitsiotis,et al.  Linear conic formulations for two-party correlations and values of nonlocal games , 2015, Math. Program..

[27]  Josef Teichmann,et al.  The proof of Tchakaloff’s Theorem , 2005 .

[28]  Florian Jarre,et al.  New results on the cp-rank and related properties of co(mpletely )positive matrices , 2015 .

[29]  Monique Laurent,et al.  Bounds on entanglement dimensions and quantum graph parameters via noncommutative polynomial optimization , 2017, Math. Program..

[30]  Florian Jarre,et al.  On the cp-Rank and Minimal cp Factorizations of a Completely Positive Matrix , 2013, SIAM J. Matrix Anal. Appl..

[31]  Mirjam Dür,et al.  A factorization method for completely positive matrices , 2020 .

[32]  Nicolas Gillis,et al.  Introduction to Nonnegative Matrix Factorization , 2017, ArXiv.

[33]  Hans Raj Tiwary,et al.  Extended formulations, nonnegative factorizations, and randomized communication protocols , 2011, Mathematical Programming.

[34]  Igor Klep,et al.  Constrained trace-optimization of polynomials in freely noncommuting variables , 2016, J. Glob. Optim..

[35]  James Renegar,et al.  On the Computational Complexity and Geometry of the First-Order Theory of the Reals, Part I: Introduction. Preliminaries. The Geometry of Semi-Algebraic Sets. The Decision Problem for the Existential Theory of the Reals , 1992, J. Symb. Comput..

[36]  Nicolas Gillis,et al.  Algorithms for positive semidefinite factorization , 2017, Comput. Optim. Appl..

[37]  Igor Klep,et al.  Optimization of Polynomials in Non-Commuting Variables , 2016 .

[38]  Monique Laurent,et al.  On the closure of the completely positive semidefinite cone and linear approximations to quantum colorings , 2017 .

[39]  Etienne de Klerk,et al.  Approximation of the Stability Number of a Graph via Copositive Programming , 2002, SIAM J. Optim..

[40]  M. Yannakakis Expressing combinatorial optimization problems by linear programs , 1991, Symposium on the Theory of Computing.

[41]  J. Lasserre Moments, Positive Polynomials And Their Applications , 2009 .

[42]  Antonios Varvitsiotis,et al.  Matrix factorizations of correlation matrices and applications , 2017 .

[43]  Gérard Cornuéjols,et al.  Extended formulations in combinatorial optimization , 2013, Ann. Oper. Res..

[44]  B. Blackadar,et al.  Operator Algebras: Theory of C*-Algebras and von Neumann Algebras , 2005 .

[45]  William Slofstra,et al.  THE SET OF QUANTUM CORRELATIONS IS NOT CLOSED , 2017, Forum of Mathematics, Pi.

[46]  W. Rudin Real and complex analysis , 1968 .

[47]  P. Parrilo Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization , 2000 .

[48]  Jiawang Nie,et al.  The A-Truncated K -Moment Problem , 2012 .

[49]  Immanuel M. Bomze,et al.  From seven to eleven: Completely positive matrices with high cp-rank , 2014 .

[50]  Rahul Jain,et al.  Efficient Protocols for Generating Bipartite Classical Distributions and Quantum States , 2013, IEEE Transactions on Information Theory.

[51]  Jean B. Lasserre,et al.  New approximations for the cone of copositive matrices and its dual , 2010, Mathematical Programming.

[52]  Immanuel M. Bomze,et al.  New Lower Bounds and Asymptotics for the cp-Rank , 2015, SIAM J. Matrix Anal. Appl..

[53]  Ronald de Wolf,et al.  Some upper and lower bounds on PSD-rank , 2014, Mathematical Programming.

[54]  Pablo A. Parrilo,et al.  Lower bounds on nonnegative rank via nonnegative nuclear norms , 2012, Math. Program..

[55]  A. Berman,et al.  Completely Positive Matrices , 2003 .

[56]  Mirjam Dür,et al.  Linear-Time Complete Positivity Detection and Decomposition of Sparse Matrices , 2012, SIAM J. Matrix Anal. Appl..

[57]  R. Kipp Martin,et al.  Using separation algorithms to generate mixed integer model reformulations , 1991, Oper. Res. Lett..

[58]  Martin Grötschel,et al.  The ellipsoid method and its consequences in combinatorial optimization , 1981, Comb..

[59]  David Mond,et al.  Stochastic factorizations, sandwiched simplices and the topology of the space of explanations , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[60]  Parikshit Shah,et al.  Guaranteed Tensor Decomposition: A Moment Approach , 2015, ICML.

[61]  Zhaohui Wei,et al.  Completely positive semidefinite rank , 2016, Math. Program..

[62]  George Phillip Barker,et al.  A non-commutative spectral theorem , 1978 .

[63]  Hans Raj Tiwary,et al.  Exponential Lower Bounds for Polytopes in Combinatorial Optimization , 2011, J. ACM.

[64]  di Dio,et al.  The truncated moment problem , 2018 .

[65]  Uriel G. Rothblum,et al.  A note on the computation of the CP-rank , 2006 .

[66]  Pablo A. Parrilo,et al.  Self-scaled bounds for atomic cone ranks: applications to nonnegative rank and cp-rank , 2014, Math. Program..

[67]  Michel X. Goemans,et al.  Smallest compact formulation for the permutahedron , 2015, Math. Program..

[68]  Yaroslav Shitov,et al.  A universality theorem for nonnegative matrix factorizations , 2016, 1606.09068.

[69]  J. Lasserre,et al.  Handbook on Semidefinite, Conic and Polynomial Optimization , 2012 .

[70]  Igor Klep,et al.  Connes' embedding conjecture and sums of hermitian squares , 2008 .

[71]  Raúl E. Curto,et al.  Solution of the Truncated Complex Moment Problem for Flat Data , 1996 .

[72]  Stephen A. Vavasis,et al.  On the Complexity of Nonnegative Matrix Factorization , 2007, SIAM J. Optim..

[73]  Yaroslav Shitov The Complexity of Positive Semidefinite Matrix Factorization , 2017, SIAM J. Optim..

[74]  Stefano Pironio,et al.  SDP Relaxations for Non-Commutative Polynomial Optimization , 2012 .

[75]  Vern I. Paulsen,et al.  Non-closure of the Set of Quantum Correlations via Graphs , 2017, Communications in Mathematical Physics.

[76]  Rekha R. Thomas,et al.  Positive semidefinite rank , 2014, Math. Program..

[77]  Igor Klep,et al.  The truncated tracial moment problem , 2010, 1001.3679.