Seidel's legacy and the existence of complex equiangular Parseval frames

Seidel's combinatorial approach to the construction of real, symmetric matrices with unimodular entries and two eigenvalues has produced many equiangular Parseval frames for real Hilbert spaces. We follow Seidel's footsteps and develop a corresponding combinatorial characterization of complex Seidel matrices belonging to equiangular Parseval frames. We deduce necessary conditions for the existence of complex Seidel matrices containing pth roots of unity and having exactly two eigenvalues, under the assumption that p is prime. Explicitly examining the necessary conditions for p = 5, for example, rules out the existence of many such frames with a number of vectors less than 50. Nevertheless, there are examples, which we confirm by constructing p2 × p2 Seidel matrices containing pth roots of unity and having two eigenvalues. and thus the existence of the associated complex equiangular Parseval frames, for any p ≥ 2

[1]  Thomas Strohmer,et al.  A note on equiangular tight frames , 2008 .

[2]  J. Kovacevic,et al.  Life Beyond Bases: The Advent of Frames (Part I) , 2007, IEEE Signal Processing Magazine.

[3]  Vivek K Goyal,et al.  Quantized Frame Expansions with Erasures , 2001 .

[4]  J. Kovacevic,et al.  Life Beyond Bases: The Advent of Frames (Part II) , 2007, IEEE Signal Processing Magazine.

[5]  Deepti Kalra,et al.  Complex equiangular cyclic frames and erasures , 2006 .

[6]  V. Paulsen,et al.  Optimal frames for erasures , 2004 .

[7]  Thomas Strohmer,et al.  GRASSMANNIAN FRAMES WITH APPLICATIONS TO CODING AND COMMUNICATION , 2003, math/0301135.

[8]  Peter G. Casazza,et al.  Equal-Norm Tight Frames with Erasures , 2003, Adv. Comput. Math..

[9]  A. T. Butson,et al.  Generalized Hadamard matrices , 1962 .

[10]  Wojciech Tadej,et al.  A Concise Guide to Complex Hadamard Matrices , 2006, Open Syst. Inf. Dyn..

[11]  Joseph M. Renes,et al.  Symmetric informationally complete quantum measurements , 2003, quant-ph/0310075.

[12]  S. G. Hoggar 64 Lines from a Quaternionic Polytope , 1998 .

[13]  Helen J. Elwood,et al.  Complex equiangular Parseval frames and Seidel matrices containing $p$th roots of unity , 2010 .

[14]  J. J. Seidel,et al.  A SURVEY OF TWO-GRAPHS , 1976 .

[15]  J. J. Seidel,et al.  Strongly Regular Graphs Derived from Combinatorial Designs , 1970, Canadian Journal of Mathematics.

[16]  V. Paulsen,et al.  Frames, graphs and erasures , 2004, math/0406134.

[17]  W. Wootters Quantum Measurements and Finite Geometry , 2004, quant-ph/0406032.

[18]  Bernhard G. Bodmann,et al.  Equiangular tight frames from complex Seidel matrices containing cube roots of unity , 2008, 0805.2014.

[19]  Jennifer Seberry,et al.  Complex Hadamard matrices , 1973 .

[20]  Markus Grassl Tomography of Quantum States in Small Dimensions , 2005, Electron. Notes Discret. Math..