Seidel's legacy and the existence of complex equiangular Parseval frames
暂无分享,去创建一个
[1] Thomas Strohmer,et al. A note on equiangular tight frames , 2008 .
[2] J. Kovacevic,et al. Life Beyond Bases: The Advent of Frames (Part I) , 2007, IEEE Signal Processing Magazine.
[3] Vivek K Goyal,et al. Quantized Frame Expansions with Erasures , 2001 .
[4] J. Kovacevic,et al. Life Beyond Bases: The Advent of Frames (Part II) , 2007, IEEE Signal Processing Magazine.
[5] Deepti Kalra,et al. Complex equiangular cyclic frames and erasures , 2006 .
[6] V. Paulsen,et al. Optimal frames for erasures , 2004 .
[7] Thomas Strohmer,et al. GRASSMANNIAN FRAMES WITH APPLICATIONS TO CODING AND COMMUNICATION , 2003, math/0301135.
[8] Peter G. Casazza,et al. Equal-Norm Tight Frames with Erasures , 2003, Adv. Comput. Math..
[9] A. T. Butson,et al. Generalized Hadamard matrices , 1962 .
[10] Wojciech Tadej,et al. A Concise Guide to Complex Hadamard Matrices , 2006, Open Syst. Inf. Dyn..
[11] Joseph M. Renes,et al. Symmetric informationally complete quantum measurements , 2003, quant-ph/0310075.
[12] S. G. Hoggar. 64 Lines from a Quaternionic Polytope , 1998 .
[13] Helen J. Elwood,et al. Complex equiangular Parseval frames and Seidel matrices containing $p$th roots of unity , 2010 .
[14] J. J. Seidel,et al. A SURVEY OF TWO-GRAPHS , 1976 .
[15] J. J. Seidel,et al. Strongly Regular Graphs Derived from Combinatorial Designs , 1970, Canadian Journal of Mathematics.
[16] V. Paulsen,et al. Frames, graphs and erasures , 2004, math/0406134.
[17] W. Wootters. Quantum Measurements and Finite Geometry , 2004, quant-ph/0406032.
[18] Bernhard G. Bodmann,et al. Equiangular tight frames from complex Seidel matrices containing cube roots of unity , 2008, 0805.2014.
[19] Jennifer Seberry,et al. Complex Hadamard matrices , 1973 .
[20] Markus Grassl. Tomography of Quantum States in Small Dimensions , 2005, Electron. Notes Discret. Math..