Electrodeposited Metal Organic Framework toward Excellent Hydrogen Sensing in an Ionic Liquid

The synthesis of thin films of metal organic frameworks (MOFs) is a rapidly growing area owing to the use of these highly functional nanomaterials for various applications. In this study, a thin la...

[1]  Wei‐Hung Chiang,et al.  Zirconium-Based Metal–Organic Framework Nanocomposites Containing Dimensionally Distinct Nanocarbons for Pseudocapacitors , 2020 .

[2]  Mohammad Yaser Masoomi,et al.  Sensitive Ratiometric Fluorescent Metal-organic Framework (MOF) Sensor for Calcium Signaling in Human Blood Ionic Concentrations Media. , 2020, ACS applied materials & interfaces.

[3]  Q. Wang,et al.  Ultrasensitive Assay of Alkaline Phosphatase Based on the Fluorescent Response Difference of the Metal–Organic Framework Sensor , 2019, ACS omega.

[4]  Cory M. Simon,et al.  Curating metal-organic frameworks to compose robust gas sensor arrays in dilute conditions. , 2019, ACS applied materials & interfaces.

[5]  De-Hao Tsai,et al.  Zirconium-Based Metal–Organic Framework Nanocarrier for the Controlled Release of Ibuprofen , 2019, ACS Applied Nano Materials.

[6]  D. Silvester New innovations in ionic liquid–based miniaturised amperometric gas sensors , 2019, Current Opinion in Electrochemistry.

[7]  Suna Timur,et al.  Metal organic frameworks in electrochemical and optical sensing platforms: a review , 2019, Microchimica Acta.

[8]  G. Hussain,et al.  Preparation of platinum-based 'cauliflower microarrays' for enhanced ammonia gas sensing. , 2019, Analytica chimica acta.

[9]  Junxing Hao,et al.  Potential-Tunable Metal–Organic Frameworks: Electrosynthesis, Properties, and Applications for Sensing of Organic Molecules , 2019, The Journal of Physical Chemistry C.

[10]  Yufan Zhang,et al.  Fabrication of amine-functionalized metal-organic frameworks with embedded palladium nanoparticles for highly sensitive electrochemical detection of telomerase activity , 2019, Sensors and Actuators B: Chemical.

[11]  Huan Pang,et al.  Metal-organic frameworks for direct electrochemical applications , 2018, Coordination Chemistry Reviews.

[12]  D. B. Hibbert,et al.  Ionic Liquid‐based Microchannels for Highly Sensitive and Fast Amperometric Detection of Toxic Gases , 2018, Electroanalysis.

[13]  I. Iatsunskyi,et al.  High-Performance Nanowire Hydrogen Sensors by Exploiting the Synergistic Effect of Pd Nanoparticles and Metal-Organic Framework Membranes. , 2018, ACS applied materials & interfaces.

[14]  A. O'Mullane,et al.  Modification of Microelectrode Arrays with High Surface Area Dendritic Platinum 3D Structures: Enhanced Sensitivity for Oxygen Detection in Ionic Liquids , 2018, Nanomaterials.

[15]  M. Tadé,et al.  Cascade applications of robust MIL-96 metal organic frameworks in environmental remediation: Proof of concept , 2018, Chemical Engineering Journal.

[16]  S. Holmes,et al.  Microwave-assisted synthesis of zirconium-based metal organic frameworks (MOFs): Optimization and gas adsorption , 2018 .

[17]  Ki-Joong Kim,et al.  Rapid, Selective, Ambient Growth and Optimization of Copper Benzene-1,3,5-Tricarboxylate (Cu–BTC) Metal–Organic Framework Thin Films on a Conductive Metal Oxide , 2018 .

[18]  Kangbing Wu,et al.  Tunable Electrochemistry of Electrosynthesized Copper Metal–Organic Frameworks , 2018 .

[19]  Ki-Hyun Kim,et al.  Metal–organic framework composites as electrocatalysts for electrochemical sensing applications , 2018 .

[20]  C. Buckley,et al.  Macroporous platinum electrodes for hydrogen oxidation in ionic liquids , 2018 .

[21]  M. Tadé,et al.  Adsorptive removal of antibiotic sulfonamide by UiO-66 and ZIF-67 for wastewater treatment. , 2017, Journal of colloid and interface science.

[22]  D. Nematollahi,et al.  Electrochemically Assisted Self-Assembly Technique for the Fabrication of Mesoporous Metal-Organic Framework Thin Films: Composition of 3D Hexagonally Packed Crystals with 2D Honeycomb-like Mesopores. , 2017, Journal of the American Chemical Society.

[23]  M. Tadé,et al.  One-pot synthesis of binary metal organic frameworks (HKUST-1 and UiO-66) for enhanced adsorptive removal of water contaminants. , 2017, Journal of colloid and interface science.

[24]  Xiangqun Zeng,et al.  Hydrogen Electrooxidation in Ionic Liquids Catalyzed by the NTf2 Radical. , 2017, The journal of physical chemistry. C, Nanomaterials and interfaces.

[25]  M. Muhler,et al.  Impact of synthesis parameters on the formation of defects in HKUST‐1 , 2017 .

[26]  Spencer Harp,et al.  Synthesis and Electrospraying of Nanoscale MOF (Metal Organic Framework) for High-Performance CO2 Adsorption Membrane , 2017, Nanoscale Research Letters.

[27]  G. Hussain,et al.  Detection of sub-ppm Concentrations of Ammonia in an Ionic Liquid: Enhanced Current Density Using "Filled" Recessed Microarrays. , 2016, Analytical chemistry.

[28]  M. Tadé,et al.  Excellent performance of copper based metal organic framework in adsorptive removal of toxic sulfonamide antibiotics from wastewater. , 2016, Journal of colloid and interface science.

[29]  M. Tadé,et al.  Size-Tailored Porous Spheres of Manganese Oxides for Catalytic Oxidation via Peroxymonosulfate Activation , 2016 .

[30]  R. Dryfe,et al.  Electrochemical deposition of zeolitic imidazolate framework electrode coatings for supercapacitor electrodes , 2016 .

[31]  Hans Van Gorp,et al.  Chemical vapour deposition of zeolitic imidazolate framework thin films. , 2016, Nature materials.

[32]  Patricia Gorgojo,et al.  Mapping the Cu-BTC metal-organic framework (HKUST-1) stability envelope in the presence of water vapour for CO2 adsorption from flue gases , 2015 .

[33]  S. C. Ammal,et al.  Active Sites in Copper-Based Metal–Organic Frameworks: Understanding Substrate Dynamics, Redox Processes, and Valence-Band Structure , 2015 .

[34]  Ling Wu,et al.  A simple strategy for fabrication of Pd@MIL-100(Fe) nanocomposite as a visible-light-driven photocatalyst for the treatment of pharmaceuticals and personal care products (PPCPs) , 2015 .

[35]  Hong-Cai Zhou,et al.  Recent progress in the synthesis of metal–organic frameworks , 2015, Science and technology of advanced materials.

[36]  Lianmao Peng,et al.  Multifunctional graphene sensors for magnetic and hydrogen detection. , 2015, ACS applied materials & interfaces.

[37]  Huangxian Ju,et al.  Porphyrin-encapsulated metal-organic frameworks as mimetic catalysts for electrochemical DNA sensing via allosteric switch of hairpin DNA. , 2015, Analytical chemistry.

[38]  Jan Fransaer,et al.  Electrochemical Film Deposition of the Zirconium Metal–Organic Framework UiO-66 and Application in a Miniaturized Sorbent Trap , 2015 .

[39]  Antony Ananth,et al.  Copper oxide nanomaterials: Synthesis, characterization and structure-specific antibacterial performance , 2015 .

[40]  Jan Fransaer,et al.  On the Electrochemical Deposition of Metal-Organic Frameworks , 2014 .

[41]  M. L. Ng,et al.  Cu(1+) in HKUST-1: selective gas adsorption in the presence of water. , 2014, Chemical communications.

[42]  Shuang Lin,et al.  Adsorption behavior of metal–organic frameworks for methylene blue from aqueous solution , 2014 .

[43]  R. Clowes,et al.  Macroporous metal–organic framework microparticles with improved liquid phase separation , 2014 .

[44]  Huimin Yang,et al.  Electrochemical synthesis of flower shaped morphology MOFs in an ionic liquid system and their electrocatalytic application to the hydrogen evolution reaction , 2014 .

[45]  M. E. Foster,et al.  Tunable Electrical Conductivity in Metal-Organic Framework Thin-Film Devices , 2014, Science.

[46]  D. Arrigan,et al.  Oxygen reduction voltammetry on platinum macrodisk and screen-printed electrodes in ionic liquids: Reaction of the electrogenerated superoxide species with compounds used in the paste of Pt screen-printed electrodes? , 2013 .

[47]  Hong‐Cai Zhou,et al.  Generation and applications of structure envelopes for porous metal‒organic frameworks , 2013 .

[48]  M. A. Kulandainathan,et al.  Efficient electrosynthesis of highly active Cu3(BTC)2-MOF and its catalytic application to chemical reduction , 2013 .

[49]  Q. Huo,et al.  Effect of cationic surfactants on structure and morphology of mesostructured MOFs , 2012 .

[50]  Hong‐Cai Zhou,et al.  Cooperative template-directed assembly of mesoporous metal-organic frameworks. , 2012, Journal of the American Chemical Society.

[51]  D. Silvester,et al.  Comparative Study of Screen Printed Electrodes for Ammonia Gas Sensing in Ionic Liquids , 2011 .

[52]  Ulrich Banach,et al.  Hydrogen Sensors - A review , 2011 .

[53]  S. Kitagawa,et al.  Morphology design of porous coordination polymer crystals by coordination modulation. , 2011, Journal of the American Chemical Society.

[54]  Kyriakos C. Stylianou,et al.  CO2 selectivity of a 1D microporous adenine-based metal-organic framework synthesised in water. , 2011, Chemical communications.

[55]  Ghenadii Korotcenkov,et al.  Review of electrochemical hydrogen sensors. , 2009, Chemical reviews.

[56]  R. Compton,et al.  Cyclic voltammetry on electrode surfaces covered with porous layers: An analysis of electron transfer kinetics at single-walled carbon nanotube modified electrodes , 2008 .

[57]  Kristopher R. Ward,et al.  The electrochemical oxidation of hydrogen at activated platinum electrodes in room temperature ionic liquids as solvents , 2008 .

[58]  Darren L. Poole,et al.  Voltammetric Characterization of the Ferrocene|Ferrocenium and Cobaltocenium|Cobaltocene Redox Couples in RTILs , 2008 .

[59]  R. Compton,et al.  An electrochemical study of the oxidation of hydrogen at platinum electrodes in several room temperature ionic liquids. , 2007, The journal of physical chemistry. B.

[60]  The,et al.  A NEW LAW OF CRYSTAL MORPHOLOGY EXTENDING THE LAW OF BRAVAIS , 2007 .

[61]  R. G. Evans,et al.  Electrochemical rate constants in room temperature ionic liquids: the oxidation of a series of ferrocene derivatives. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[62]  J. Wadhawan,et al.  Water-induced accelerated ion diffusion: voltammetric studies in 1-methyl-3-[2,6-(S)-dimethylocten-2-yl]imidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium tetrafluoroborate and hexafluorophosphate ionic liquids , 2000 .

[63]  H. Angerstein-Kozlowska,et al.  Elementary steps of electrochemical oxidation of single-crystal planes of Au Part II. A chemical and structural basis of oxidation of the (111) plane , 1987 .

[64]  G. Gritzner,et al.  Recommendations on reporting electrode potentials in nonaqueous solvents: IUPC commission on electrochemistry , 1984 .