A review of some geometric integrators

Some of the most important geometric integrators for both ordinary and partial differential equations are reviewed and illustrated with examples in mechanics. The class of Hamiltonian differential systems is recalled and its symplectic structure is highlighted. The associated natural geometric integrators, known as symplectic integrators, are then presented. In particular, their ability to numerically reproduce first integrals with a bounded error over a long time interval is shown. The extension to partial differential Hamiltonian systems and to multisymplectic integrators is presented afterwards. Next, the class of Lagrangian systems is described. It is highlighted that the variational structure carries both the dynamics (Euler–Lagrange equations) and the conservation laws (Nœther’s theorem). Integrators preserving the variational structure are constructed by mimicking the calculus of variation at the discrete level. We show that this approach leads to numerical schemes which preserve exactly the energy of the system. After that, the Lie group of local symmetries of partial differential equations is recalled. A construction of Lie-symmetry-preserving numerical scheme is then exposed. This is done via the moving frame method. Applications to Burgers equation are shown. The last part is devoted to the Discrete Exterior Calculus, which is a structure-preserving integrator based on differential geometry and exterior calculus. The efficiency of the approach is demonstrated on fluid flow problems with a passive scalar advection.

[1]  D. Dutykh,et al.  Serre-type equations in deep water , 2016, 1607.00216.

[2]  Lectures on symplectic and poisson geometry , 2000 .

[3]  Anil N. Hirani,et al.  Comparison of discrete Hodge star operators for surfaces , 2016, Comput. Aided Des..

[4]  R. Bains,et al.  Methods of differential geometry in analytical mechanics , 1992 .

[6]  R. Ho Algebraic Topology , 2022 .

[7]  A. Deriglazov Classical Mechanics: Hamiltonian and Lagrangian Formalism , 2010 .

[8]  A. Schaft,et al.  Discrete exterior geometry approach to structure-preserving discretization of distributed-parameter port-Hamiltonian systems , 2011, 1111.6403.

[9]  A. Shastri Basic Algebraic Topology , 2013 .

[10]  Martin Welk,et al.  Numerical Invariantization for Morphological PDE Schemes , 2007, SSVM.

[11]  D. Arnold,et al.  Finite element exterior calculus: From hodge theory to numerical stability , 2009, 0906.4325.

[12]  A. Fordy APPLICATIONS OF LIE GROUPS TO DIFFERENTIAL EQUATIONS (Graduate Texts in Mathematics) , 1987 .

[13]  Eric Sonnendrücker,et al.  SPLINE DISCRETE DIFFERENTIAL FORMS. , 2012 .

[14]  Houman Owhadi,et al.  Variational integrators for electric circuits , 2011 .

[15]  L. S. Pontri︠a︡gin,et al.  Foundations of Combinatorial Topology , 1952 .

[16]  Gianmarco Manzini,et al.  Mimetic finite difference method , 2014, J. Comput. Phys..

[17]  Adrian J. Lew,et al.  Variational integrators for the dynamics of thermo-elastic solids with finite speed thermal waves , 2014, J. Comput. Phys..

[18]  S. Reich,et al.  Multi-symplectic spectral discretizations for the Zakharov–Kuznetsov and shallow water equations , 2001 .

[19]  Yongzhong Song,et al.  Derivation of the multisymplectic Crank-Nicolson scheme for the nonlinear Schrödinger equation , 2014, Comput. Phys. Commun..

[20]  Peter J. Olver,et al.  Geometric Foundations of Numerical Algorithms and Symmetry , 2001, Applicable Algebra in Engineering, Communication and Computing.

[21]  J. Kijowski A finite-dimensional canonical formalism in the classical field theory , 1973 .

[22]  N. Kh. Ibragimov New trends in theoretical developments and computational methods , 1996 .

[23]  Ernst Hairer,et al.  Numerical integrators based on modified differential equations , 2007, Math. Comput..

[24]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[25]  K. Feng Difference schemes for Hamiltonian formalism and symplectic geometry , 1986 .

[26]  Yosi Shibberu Time-discretization of Hamiltonian dynamical systems☆ , 1994 .

[27]  Artur Palha,et al.  Mimetic framework on curvilinear quadrilaterals of arbitrary order , 2011, 1111.4304.

[28]  P. Newton,et al.  Point vortex dynamics in the post-Aref era , 2014 .

[29]  E. Tonti The reason for analogies between physical theories , 1976 .

[30]  Xie Zheng,et al.  Numerical Simulation of Antennae by Discrete Exterior Calculus , 2009 .

[31]  Darryl D. Holm,et al.  Multisymplectic formulation of fluid dynamics using the inverse map , 2007, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[32]  Marc I. Gerritsma,et al.  High order geometric methods with exact conservation properties , 2014, J. Comput. Phys..

[33]  Bo Han,et al.  Lie symmetry analysis of the Heisenberg equation , 2017, Commun. Nonlinear Sci. Numer. Simul..

[34]  P. Griffiths,et al.  Hyperbolic exterior differential systems and their conservation laws, part II , 1995 .

[35]  Pilwon Kim,et al.  Invariantization of the Crank Nicolson method for Burgers’ equation , 2008 .

[36]  J. Marsden,et al.  Discrete mechanics and variational integrators , 2001, Acta Numerica.

[37]  M. Puta Hamiltonian Mechanical Systems and Geometric Quantization , 1993 .

[38]  Ye Zheng,et al.  Numerical Simulation of Electromagnetic Waves Scattering by Discrete Exterior Calculus , 2009 .

[39]  Elena Celledoni,et al.  An introduction to Lie group integrators - basics, new developments and applications , 2012, J. Comput. Phys..

[40]  Boying Wu,et al.  Spectral-collocation variational integrators , 2017, J. Comput. Phys..

[41]  R-torsion and linking numbers from simplicial abelian gauge theories , 1996, hep-th/9612009.

[42]  M. Salgado,et al.  SYMMETRIES, NEWTONOID VECTOR FIELDS AND CONSERVATION LAWS IN THE LAGRANGIAN k-SYMPLECTIC FORMALISM , 2012, Reviews in Mathematical Physics.

[43]  Ernst Hairer,et al.  The life-span of backward error analysis for numerical integrators , 1997 .

[44]  Anil N. Hirani,et al.  Numerical Method for Darcy Flow Derived Using Discrete Exterior Calculus , 2008, ArXiv.

[45]  Yiying Tong,et al.  Stable, circulation-preserving, simplicial fluids , 2007, TOGS.

[46]  Arjan van der Schaft,et al.  Discrete port-Hamiltonian systems , 2006, Syst. Control. Lett..

[47]  Thomas J. Bridges,et al.  Unstable eigenvalues and the linearization about solitary waves and fronts with symmetry , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[48]  Luigi Mangiarotti,et al.  New Lagrangian and Hamiltonian Methods in Field Theory , 1997 .

[49]  Willy Hereman,et al.  Review of Symbolic Software for the Computation of Lie Symmetries of Differential Equations , 1994 .

[50]  J. W. Humberston Classical mechanics , 1980, Nature.

[51]  T. Frankel The geometry of physics : an introduction , 2004 .

[52]  Mathieu Desbrun,et al.  HOT: Hodge-optimized triangulations , 2011, SIGGRAPH 2011.

[53]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[54]  M. Shashkov,et al.  Compatible spatial discretizations , 2006 .

[55]  M. Leok Variational Integrators , 2012 .

[56]  Chris Budd,et al.  Symmetry-adapted moving mesh schemes for the nonlinear Schrödinger equation , 2001 .

[57]  Neil Pomphrey,et al.  Integrable and chaotic motions of four vortices , 1980 .

[58]  Marc I. Gerritsma,et al.  Mixed mimetic spectral element method for Stokes flow: A pointwise divergence-free solution , 2012, J. Comput. Phys..

[59]  V. Pavlov,et al.  Evolution of localized vortices in the presence of stochastic perturbations , 2006 .

[60]  U. Ascher,et al.  Multisymplectic box schemes and the Korteweg{de Vries equation , 2004 .

[61]  Yushun Wang,et al.  On multisymplectic integrators based on Runge-Kutta-Nyström methods for Hamiltonian wave equations , 2006, Appl. Math. Comput..

[62]  F. Valiquette,et al.  Symmetry preserving numerical schemes for partial differential equations and their numerical tests , 2011, 1110.5921.

[63]  D. Duncan,et al.  SYMPLECTIC FINITE DIFFERENCE APPROXIMATIONS OF THE NONLINEAR KLEIN–GORDON EQUATION∗ , 1997 .

[64]  Mark J. Gotay,et al.  A multisymplectic framework for classical field theory and the calculus of variations II: space + time decomposition , 1991 .

[65]  Alexei F. Cheviakov,et al.  GeM software package for computation of symmetries and conservation laws of differential equations , 2007, Comput. Phys. Commun..

[66]  Z. Deng,et al.  Multi-symplectic Runge-Kutta methods for Landau-Ginzburg-Higgs equation , 2009 .

[67]  B. Lindgren,et al.  Evaluation of scaling laws derived from Lie group symmetry methods in zero-pressure-gradient turbulent boundary layers , 2004, Journal of Fluid Mechanics.

[68]  R. A. Nicolaides,et al.  Covolume Discretization of Differential Forms , 2006 .

[69]  G. J. Cooper Stability of Runge-Kutta Methods for Trajectory Problems , 1987 .

[70]  Martin Oberlack On the decay exponent of isotropic turbulence , 2002 .

[71]  C. Isham,et al.  Modern Differential Geometry For Physicists , 1989 .

[72]  Boying Wu,et al.  Spectral variational integrators for semi-discrete Hamiltonian wave equations , 2017, J. Comput. Appl. Math..

[73]  R. Ruth A Can0nical Integrati0n Technique , 1983, IEEE Transactions on Nuclear Science.

[74]  M. Oberlack,et al.  Analysis and development of subgrid turbulence models preserving the symmetry properties of the Navier–Stokes equations , 2007 .

[75]  Pilwon Kim,et al.  Invariantization of numerical schemes using moving frames , 2007 .

[76]  W. L. Burke Applied Differential Geometry , 1985 .

[77]  Anil N. Hirani,et al.  Discrete exterior calculus discretization of incompressible Navier-Stokes equations over surface simplicial meshes , 2015, J. Comput. Phys..

[78]  Multisymplectic schemes for the nonlinear Klein-Gordon equation , 2002 .

[79]  T. Tarhasaari,et al.  Some realizations of a discrete Hodge operator: a reinterpretation of finite element techniques [for EM field analysis] , 1999 .

[80]  Jingjing Zhang,et al.  Splitting multisymplectic integrators for Maxwell's equations , 2010, J. Comput. Phys..

[81]  Eric Sonnendrücker,et al.  Spline discrete differential forms. Application to Maxwell' s equations. , 2011 .

[82]  Nail H. Ibragimov,et al.  Conservation laws for a coupled variable-coefficient modified Korteweg-de Vries system in a two-layer fluid model , 2013, Commun. Nonlinear Sci. Numer. Simul..

[83]  D. Dutykh,et al.  On the multi-symplectic structure of the Serre–Green–Naghdi equations , 2015, 1511.00612.

[84]  Xinyuan Wu,et al.  Structure-Preserving Algorithms for Oscillatory Differential Equations , 2013 .

[85]  Chun Li,et al.  Multi-symplectic Runge-Kutta-Nyström methods for nonlinear Schrödinger equations with variable coefficients , 2007, J. Comput. Phys..

[86]  John Carminati,et al.  Symbolic Computation and Differential Equations: Lie Symmetries , 2000, J. Symb. Comput..

[87]  P. Griffiths,et al.  Hyperbolic exterior differential systems and their conservation laws, part I , 1995 .

[88]  Aiguo Xiao,et al.  Fractional variational integrators for fractional variational problems , 2012 .

[89]  Andrew H. Wallace Algebraic topology: homology and cohomology , 1970 .

[90]  A. Baker Matrix Groups: An Introduction to Lie Group Theory , 2003 .

[91]  H. Lewis,et al.  A comparison of symplectic and Hamilton's principle algorithms for autonomous and non-autonomous systems of ordinary differential equations , 2001 .

[92]  On the geometry of multisymplectic manifolds , 1999 .

[93]  Marc I. Gerritsma,et al.  A mass, energy, enstrophy and vorticity conserving (MEEVC) mimetic spectral element discretization for the 2D incompressible Navier-Stokes equations , 2016, J. Comput. Phys..

[94]  Symplectic approach to the theory of quantized fields. I , 1969 .

[95]  Colin J. Cotter,et al.  A finite element exterior calculus framework for the rotating shallow-water equations , 2012, J. Comput. Phys..

[96]  R. Abraham,et al.  Manifolds, tensor analysis, and applications: 2nd edition , 1988 .

[97]  Weng Cho Chew,et al.  Numerical electromagnetic frequency domain analysis with discrete exterior calculus , 2017, J. Comput. Phys..

[98]  M. Spivak A comprehensive introduction to differential geometry , 1979 .

[99]  L. K. Norris,et al.  Covariant field theory on frame bundles of fibered manifolds , 2000 .

[100]  Mark J. Gotay,et al.  A Multisymplectic Framework for Classical Field Theory and the Calculus of Variations: I. Covariant Hamiltonian Formalism , 1991 .

[101]  A. Bossavit On the geometry of electromagnetism. : (2):Geometrical objects , 1998 .

[102]  R. Pierrehumbert,et al.  Dynamics of a passive tracer in a velocity field of four identical point vortices , 1999, Journal of Fluid Mechanics.

[103]  Pavel B. Bochev,et al.  Principles of Mimetic Discretizations of Differential Operators , 2006 .

[104]  B. Perot Conservation Properties of Unstructured Staggered Mesh Schemes , 2000 .

[105]  A. Awane,et al.  k‐symplectic structures , 1992 .

[106]  Ying Cao,et al.  High-order compact splitting multisymplectic method for the coupled nonlinear Schrödinger equations , 2011, Comput. Math. Appl..

[107]  S. Reich Multi-Symplectic Runge—Kutta Collocation Methods for Hamiltonian Wave Equations , 2000 .

[108]  Arjan van der Schaft,et al.  Port-Hamiltonian Systems Theory: An Introductory Overview , 2014, Found. Trends Syst. Control..

[109]  D. Edelen,et al.  Applied exterior calculus , 1985 .

[110]  P. J. Kostelec,et al.  The use of Hamilton's principle to derive time-advance algorithms for ordinary differential equations , 1996 .

[111]  M. Kraus Variational integrators in plasma physics , 2013, 1307.5665.

[112]  S. Lou,et al.  Infinitely many nonlocal symmetries and conservation laws for the (1+1)-dimensional Sine-Gordon equation , 2013, 1308.3018.

[113]  Alain Bossavit Computational electromagnetism and geometry : (4):From degrees of freedom to fields , 2000 .

[114]  A. Cheviakov Symbolic Computation of Nonlocal Symmetries and Nonlocal Conservation Laws of Partial Differential Equations Using the GeM Package for Maple , 2014 .

[115]  R. Hiptmair Finite elements in computational electromagnetism , 2002, Acta Numerica.

[116]  Marcelo Epstein,et al.  The Geometrical Language of Continuum Mechanics , 2010 .

[117]  C. Thomas INTRODUCTION TO SYMPLECTIC TOPOLOGY (Oxford Mathematical Monographs) , 1997 .

[118]  Jörg Frauendiener,et al.  Discrete differential forms in general relativity , 2006 .

[120]  W. Cabot,et al.  Group analysis, direct numerical simulation and modelling of a turbulent channel flow with streamwise rotation , 2006, Journal of Fluid Mechanics.

[121]  A. Kara,et al.  Nonlocal symmetry analysis, explicit solutions and conservation laws for the fourth-order Burgers' equation , 2015 .

[122]  Jing-Bo Chen A multisymplectic pseudospectral method for seismic modeling , 2007, Appl. Math. Comput..

[123]  L. Demkowicz,et al.  De Rham diagram for hp finite element spaces , 2000 .

[124]  Geng,et al.  A SIMPLE WAY CONSTRUCTING SYMPLECTICRUNGE-KUTTA METHODS , 2000 .

[125]  A. Bossavit On the geometry of electromagnetism , 1998 .

[126]  Enzo Tonti,et al.  The Mathematical Structure of Classical and Relativistic Physics: A General Classification Diagram , 2013 .

[127]  G. Benettin,et al.  On the Hamiltonian interpolation of near-to-the identity symplectic mappings with application to symplectic integration algorithms , 1994 .

[128]  R. Abraham,et al.  Manifolds, Tensor Analysis, and Applications , 1983 .

[129]  Hassan Aref,et al.  Point vortex dynamics: A classical mathematics playground , 2007 .

[130]  Maria Luz Gandarias,et al.  Nonlinear self-adjointness and conservation laws for a generalized Fisher equation , 2013, Commun. Nonlinear Sci. Numer. Simul..

[131]  K. Gawȩdzki On the geometrization of the canonical formalism in the classical field theory , 1972 .

[132]  Ke Wu,et al.  Discrete total variation calculus and Lee's discrete mechanics , 2006, Appl. Math. Comput..

[133]  A. Bossavit Discretization of Electromagnetic Problems: The “Generalized Finite Differences” Approach , 2005 .

[134]  T. Bridges Multi-symplectic structures and wave propagation , 1997, Mathematical Proceedings of the Cambridge Philosophical Society.

[135]  A. Jamiołkowski Book reviewApplications of Lie groups to differential equations : Peter J. Olver (School of Mathematics, University of Minnesota, Minneapolis, U.S.A): Graduate Texts in Mathematics, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1986, XXVI+497pp. , 1989 .

[136]  S. Reich,et al.  Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity , 2001 .

[137]  M. Salgado,et al.  On a kind of Noether symmetries and conservation laws in k-cosymplectic field theory , 2010, 1009.2703.

[138]  Jing-Bo Chen Total Variation in Discrete Multisymplectic Field Theory and Multisymplectic-Energy-Momentum Integrators , 2002 .

[139]  A. Aksenov,et al.  CRC Handbook of Lie Group Analysis of Differential Equations. Vol. 2. Applications in Engineering and Physical Sciences , 1995 .

[140]  Yoshimasa Nakamura,et al.  A new discretization of the Kepler motion which conserves the Runge-Lenz vector , 2002 .

[141]  C. Mattiussi An Analysis of Finite Volume, Finite Element, and Finite Difference Methods Using Some Concepts from Algebraic Topology , 1997 .

[142]  F. Fedele,et al.  Geometric numerical schemes for the KdV equation , 2012, Computational Mathematics and Mathematical Physics.

[143]  D. B. Duncan,et al.  Sympletic Finite Difference Approximations of the Nonlinear Klein--Gordon Equation , 1997 .

[144]  François Gallissot Les formes extérieures et la mécanique des milieux continus , 1958 .

[145]  Vortices and invariant surfaces generated by symmetries for the 3D Navier–Stokes equations , 1999, math-ph/9912008.

[146]  Axel Voigt,et al.  Discrete Exterior Calculus (DEC) for the Surface Navier-Stokes Equation , 2016, 1611.04392.

[147]  Tuomo Rossi,et al.  Comparison of discrete exterior calculus and discrete-dipole approximation for electromagnetic scattering , 2014 .

[148]  Emmy Noether,et al.  Invariant Variation Problems , 2005, physics/0503066.

[149]  Alain Bossavit,et al.  Computational electromagnetism and geometry : Building a finite-dimensional "Maxwell's house" (1) : Network equations , 1999 .

[151]  J. Marsden,et al.  Symplectic-energy-momentum preserving variational integrators , 1999 .

[153]  Omar Maj,et al.  Variational integrators for nonvariational partial differential equations , 2014, 1412.2011.

[154]  Jing-Bo Chen Multisymplectic Geometry, Local Conservation Laws and a Multisymplectic Integrator for the Zakharov–Kuznetsov Equation , 2003 .

[155]  Ralf Hiptmair,et al.  Discrete Hodge operators , 2001, Numerische Mathematik.

[156]  A. Bossavit Whitney forms: a class of finite elements for three-dimensional computations in electromagnetism , 1988 .

[157]  M. J,et al.  RUNGE-KUTTA SCHEMES FOR HAMILTONIAN SYSTEMS , 2005 .

[158]  Erick Schulz,et al.  Convergence of Discrete Exterior Calculus Approximations for Poisson Problems , 2016, Discret. Comput. Geom..

[159]  M. Oberlack A unified approach for symmetries in plane parallel turbulent shear flows , 2001, Journal of Fluid Mechanics.

[160]  Robert Kohl,et al.  An Introduction To Algebraic Topology , 2016 .

[161]  Enzo Tonti,et al.  Why starting from differential equations for computational physics? , 2014, J. Comput. Phys..

[162]  A. Yusuf,et al.  Solitons and Conservation Laws to the Resonance Nonlinear Shrödinger's equation with both Spatio-Temporal and Inter-Modal Dispersions , 2017 .

[163]  J. M. Sanz-Serna,et al.  Symplectic integrators for Hamiltonian problems: an overview , 1992, Acta Numerica.

[164]  Fr'ed'eric H'elein Multisymplectic formalism and the covariant phase , 2011, 1106.2086.

[165]  S. Sternberg,et al.  The Hamilton-Cartan formalism in the calculus of variations , 1973 .

[166]  Curtis R. Menyuk,et al.  Some properties of the discrete Hamiltonian method , 1984 .

[167]  Eric Sonnendrücker,et al.  Finite Element Hodge for spline discrete differential forms. Application to the Vlasov-Poisson system , 2014 .

[168]  Y. Kosmann-Schwarzbach The Noether Theorems: Invariance and Conservation Laws in the Twentieth Century , 2010 .

[169]  Michael Kraus,et al.  Variational integrators for reduced magnetohydrodynamics , 2015, J. Comput. Phys..

[170]  Jérôme Bonelle,et al.  Compatible discrete operator schemes on polyhedral meshes for elliptic and Stokes equations , 2014 .

[171]  J. Rotman An Introduction to Algebraic Topology , 1957 .

[172]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[173]  Peter Monk,et al.  Finite Element Methods for Maxwell's Equations , 2003 .

[174]  Jerrold E. Marsden,et al.  Discrete Lie Advection of Differential Forms , 2009, Found. Comput. Math..

[175]  Pierre Sagaut,et al.  Comparison of some Lie-symmetry-based integrators , 2011, J. Comput. Phys..

[176]  F. Lasagni Canonical Runge-Kutta methods , 1988 .

[177]  F. Hélein Variational Problems in Differential Geometry: Multisymplectic formalism and the covariant phase space , 2009 .

[178]  H. Whitney Geometric Integration Theory , 1957 .

[179]  Nail H. Ibragimov,et al.  Conservation laws and non-invariant solutions of anisotropic wave equations with a source , 2018 .

[180]  C. Poole,et al.  Classical Mechanics, 3rd ed. , 2002 .

[181]  Keenan Crane,et al.  Digital geometry processing with discrete exterior calculus , 2013, SIGGRAPH '13.

[182]  Jonathan Herman Noether's theorem in multisymplectic geometry , 2017, 1705.05818.

[183]  A. Bossavit On the geometry of electromagnetism : (4): Maxwell's house , 1998 .

[184]  Geng Sun,et al.  The multi-symplecticity of partitioned Runge-Kutta methods for Hamiltonian PDEs , 2005, Math. Comput..

[185]  Konstantin Lipnikov,et al.  Mimetic discretization of two-dimensional magnetic diffusion equations , 2013, J. Comput. Phys..

[186]  A. Bossavit A uniform rationale for Whitney forms on various supporting shapes , 2010, Math. Comput. Simul..

[187]  A. Hamdouni,et al.  Lie-symmetry group and modeling in non-isothermal fluid mechanics , 2012 .

[188]  Stephen Lehmann,et al.  Cambridge University Press, 1584-1984. M. H. Black , 1986 .

[189]  Francesca Rapetti,et al.  Whitney Forms of Higher Degree , 2009, SIAM J. Numer. Anal..

[190]  A. Yavari On geometric discretization of elasticity , 2008 .

[191]  Ralf Hiptmair,et al.  HIGHER ORDER WHITNEY FORMS , 2001 .

[192]  Joerg Waldvogel,et al.  A new regularization of the planar problem of three bodies , 1972 .

[193]  Paul J. Atzberger,et al.  Spectral Numerical Exterior Calculus Methods for Differential Equations on Radial Manifolds , 2017, Journal of Scientific Computing.

[194]  M. D. Le'on,et al.  METHODS OF DIFFERENTIAL GEOMETRY IN CLASSICAL FIELD THEORIES: K-SYMPLECTIC AND K-COSYMPLECTIC APPROACHES , 2014, 1409.5604.

[195]  Alain Bossavit,et al.  Extrusion, contraction: their discretization via Whitney forms , 2003 .

[196]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[197]  Peter J. Olver,et al.  Moving frames , 2003, J. Symb. Comput..

[198]  Alain Bossavit,et al.  Computational electromagnetism and geometry : (5):The "Galerkin hodge" , 2000 .

[199]  Sujit Nair Time adaptive variational integrators: A space–time geodesic approach , 2012 .

[200]  Haochen Li,et al.  A new multi-symplectic Euler box scheme for the BBM equation , 2013, Math. Comput. Model..

[201]  Brian E. Moore,et al.  Backward error analysis for multi-symplectic integration methods , 2003, Numerische Mathematik.

[202]  D. Arnold,et al.  Finite element exterior calculus, homological techniques, and applications , 2006, Acta Numerica.

[203]  E. Yaşar,et al.  On symmetries, conservation laws and invariant solutions of the foam-drainage equation , 2011 .

[204]  M. Tavel Milestones in mathematical physics Noether's theorem , 1971 .

[205]  M. Turner,et al.  Asymptotic receptivity analysis and the parabolized stability equation: a combined approach to boundary layer transition , 2006, Journal of Fluid Mechanics.

[206]  Jing-Bo Chen,et al.  Variational integrators and the finite element method , 2008, Appl. Math. Comput..

[207]  James C. Sexton,et al.  Geometric discretization scheme applied to the Abelian Chern-Simons theory , 2000, hep-th/0001030.

[208]  P. Dedecker On the generalization of symplectic geometry to multiple integrals in the Calculus of Variations , 1977 .

[209]  A. Brizard An Introduction to Lagrangian Mechanics , 2008 .

[210]  Wanqiang Shen,et al.  Multi-symplectic variational integrators for the Gross-Pitaevskii equations in BEC , 2016, Appl. Math. Lett..

[211]  A. Bossavit 'Generalized Finite Differences' in Computational Electromagnetics , 2001 .

[212]  M. Qin,et al.  Symplectic Geometric Algorithms for Hamiltonian Systems , 2010 .

[213]  Dusa McDuff,et al.  Introduction to Symplectic Topology , 1995 .

[214]  P. Channell,et al.  Integrators for Lie-Poisson or dynamical systems , 1991 .

[215]  M. Crampin,et al.  On the multisymplectic formalism for first order field theories , 1991 .

[216]  B. Leimkuhler,et al.  Simulating Hamiltonian Dynamics , 2005 .

[217]  Anil N. Hirani,et al.  Delaunay Hodge star , 2012, Comput. Aided Des..

[218]  M G Calkin Lagrangian and Hamiltonian Mechanics , 1996 .

[219]  Robert I. McLachlan,et al.  On Multisymplecticity of Partitioned Runge-Kutta Methods , 2008, SIAM J. Sci. Comput..

[220]  Hans Z. Munthe-Kaas,et al.  Topics in structure-preserving discretization* , 2011, Acta Numerica.

[221]  Alain Bossavit Computational electromagnetism and geometry : (3): Convergence , 1999 .

[222]  Arzhang Angoshtari,et al.  A geometric structure-preserving discretization scheme for incompressible linearized elasticity , 2013 .

[223]  C. Scovel,et al.  Symplectic integration of Hamiltonian systems , 1990 .

[224]  G. Deschamps Electromagnetics and differential forms , 1981, Proceedings of the IEEE.

[225]  Guillermo Miranda,et al.  Mimetic Discretization Methods , 2013 .

[226]  Jerrold E. Marsden,et al.  Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems , 1999 .

[227]  Alain Bossavit,et al.  Computational electromagnetism and geometry : (2): Network constitutive laws , 1999 .

[228]  Christian Günther,et al.  The polysymplectic Hamiltonian formalism in field theory and calculus of variations. I: the local case , 1987 .

[229]  Erwan Liberge,et al.  The Symmetry Group of the Non-Isothermal Navier-Stokes Equations and Turbulence Modelling , 2010, Symmetry.

[230]  H. Flanders Differential Forms with Applications to the Physical Sciences , 1964 .

[231]  Anil N. Hirani,et al.  Discrete exterior calculus , 2005, math/0508341.

[232]  Aziz Hamdouni,et al.  A new construction for invariant numerical schemes using moving frames , 2010 .

[233]  J. Marsden,et al.  Lie-Poisson Hamilton-Jacobi theory and Lie-Poisson integrators , 1988 .

[234]  V. A. Dorodnitsyn Finite Difference Models Entirely Inheriting Continuous Symmetry Of Original Differential Equations , 1994 .

[235]  Mathieu Desbrun,et al.  The chain collocation method: A spectrally accurate calculus of forms , 2014, J. Comput. Phys..

[236]  E. Cartan La méthode du repère mobile, la théorie des groupes continus et les espaces généralisés , 1935 .

[237]  A. Bossavit Computational Electromagnetism: Variational Formulations, Complementarity, Edge Elements , 1997 .

[238]  Jason Frank,et al.  Geometric space-time integration of ferromagnetic materials , 2004 .