A review of some geometric integrators
暂无分享,去创建一个
[1] D. Dutykh,et al. Serre-type equations in deep water , 2016, 1607.00216.
[2] Lectures on symplectic and poisson geometry , 2000 .
[3] Anil N. Hirani,et al. Comparison of discrete Hodge star operators for surfaces , 2016, Comput. Aided Des..
[4] R. Bains,et al. Methods of differential geometry in analytical mechanics , 1992 .
[6] R. Ho. Algebraic Topology , 2022 .
[7] A. Deriglazov. Classical Mechanics: Hamiltonian and Lagrangian Formalism , 2010 .
[8] A. Schaft,et al. Discrete exterior geometry approach to structure-preserving discretization of distributed-parameter port-Hamiltonian systems , 2011, 1111.6403.
[9] A. Shastri. Basic Algebraic Topology , 2013 .
[10] Martin Welk,et al. Numerical Invariantization for Morphological PDE Schemes , 2007, SSVM.
[11] D. Arnold,et al. Finite element exterior calculus: From hodge theory to numerical stability , 2009, 0906.4325.
[12] A. Fordy. APPLICATIONS OF LIE GROUPS TO DIFFERENTIAL EQUATIONS (Graduate Texts in Mathematics) , 1987 .
[13] Eric Sonnendrücker,et al. SPLINE DISCRETE DIFFERENTIAL FORMS. , 2012 .
[14] Houman Owhadi,et al. Variational integrators for electric circuits , 2011 .
[15] L. S. Pontri︠a︡gin,et al. Foundations of Combinatorial Topology , 1952 .
[16] Gianmarco Manzini,et al. Mimetic finite difference method , 2014, J. Comput. Phys..
[17] Adrian J. Lew,et al. Variational integrators for the dynamics of thermo-elastic solids with finite speed thermal waves , 2014, J. Comput. Phys..
[18] S. Reich,et al. Multi-symplectic spectral discretizations for the Zakharov–Kuznetsov and shallow water equations , 2001 .
[19] Yongzhong Song,et al. Derivation of the multisymplectic Crank-Nicolson scheme for the nonlinear Schrödinger equation , 2014, Comput. Phys. Commun..
[20] Peter J. Olver,et al. Geometric Foundations of Numerical Algorithms and Symmetry , 2001, Applicable Algebra in Engineering, Communication and Computing.
[21] J. Kijowski. A finite-dimensional canonical formalism in the classical field theory , 1973 .
[22] N. Kh. Ibragimov. New trends in theoretical developments and computational methods , 1996 .
[23] Ernst Hairer,et al. Numerical integrators based on modified differential equations , 2007, Math. Comput..
[24] K. Yee. Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .
[25] K. Feng. Difference schemes for Hamiltonian formalism and symplectic geometry , 1986 .
[26] Yosi Shibberu. Time-discretization of Hamiltonian dynamical systems☆ , 1994 .
[27] Artur Palha,et al. Mimetic framework on curvilinear quadrilaterals of arbitrary order , 2011, 1111.4304.
[28] P. Newton,et al. Point vortex dynamics in the post-Aref era , 2014 .
[29] E. Tonti. The reason for analogies between physical theories , 1976 .
[30] Xie Zheng,et al. Numerical Simulation of Antennae by Discrete Exterior Calculus , 2009 .
[31] Darryl D. Holm,et al. Multisymplectic formulation of fluid dynamics using the inverse map , 2007, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[32] Marc I. Gerritsma,et al. High order geometric methods with exact conservation properties , 2014, J. Comput. Phys..
[33] Bo Han,et al. Lie symmetry analysis of the Heisenberg equation , 2017, Commun. Nonlinear Sci. Numer. Simul..
[34] P. Griffiths,et al. Hyperbolic exterior differential systems and their conservation laws, part II , 1995 .
[35] Pilwon Kim,et al. Invariantization of the Crank Nicolson method for Burgers’ equation , 2008 .
[36] J. Marsden,et al. Discrete mechanics and variational integrators , 2001, Acta Numerica.
[37] M. Puta. Hamiltonian Mechanical Systems and Geometric Quantization , 1993 .
[38] Ye Zheng,et al. Numerical Simulation of Electromagnetic Waves Scattering by Discrete Exterior Calculus , 2009 .
[39] Elena Celledoni,et al. An introduction to Lie group integrators - basics, new developments and applications , 2012, J. Comput. Phys..
[40] Boying Wu,et al. Spectral-collocation variational integrators , 2017, J. Comput. Phys..
[41] R-torsion and linking numbers from simplicial abelian gauge theories , 1996, hep-th/9612009.
[42] M. Salgado,et al. SYMMETRIES, NEWTONOID VECTOR FIELDS AND CONSERVATION LAWS IN THE LAGRANGIAN k-SYMPLECTIC FORMALISM , 2012, Reviews in Mathematical Physics.
[43] Ernst Hairer,et al. The life-span of backward error analysis for numerical integrators , 1997 .
[44] Anil N. Hirani,et al. Numerical Method for Darcy Flow Derived Using Discrete Exterior Calculus , 2008, ArXiv.
[45] Yiying Tong,et al. Stable, circulation-preserving, simplicial fluids , 2007, TOGS.
[46] Arjan van der Schaft,et al. Discrete port-Hamiltonian systems , 2006, Syst. Control. Lett..
[47] Thomas J. Bridges,et al. Unstable eigenvalues and the linearization about solitary waves and fronts with symmetry , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[48] Luigi Mangiarotti,et al. New Lagrangian and Hamiltonian Methods in Field Theory , 1997 .
[49] Willy Hereman,et al. Review of Symbolic Software for the Computation of Lie Symmetries of Differential Equations , 1994 .
[50] J. W. Humberston. Classical mechanics , 1980, Nature.
[51] T. Frankel. The geometry of physics : an introduction , 2004 .
[52] Mathieu Desbrun,et al. HOT: Hodge-optimized triangulations , 2011, SIGGRAPH 2011.
[53] V. Arnold. Mathematical Methods of Classical Mechanics , 1974 .
[54] M. Shashkov,et al. Compatible spatial discretizations , 2006 .
[55] M. Leok. Variational Integrators , 2012 .
[56] Chris Budd,et al. Symmetry-adapted moving mesh schemes for the nonlinear Schrödinger equation , 2001 .
[57] Neil Pomphrey,et al. Integrable and chaotic motions of four vortices , 1980 .
[58] Marc I. Gerritsma,et al. Mixed mimetic spectral element method for Stokes flow: A pointwise divergence-free solution , 2012, J. Comput. Phys..
[59] V. Pavlov,et al. Evolution of localized vortices in the presence of stochastic perturbations , 2006 .
[60] U. Ascher,et al. Multisymplectic box schemes and the Korteweg{de Vries equation , 2004 .
[61] Yushun Wang,et al. On multisymplectic integrators based on Runge-Kutta-Nyström methods for Hamiltonian wave equations , 2006, Appl. Math. Comput..
[62] F. Valiquette,et al. Symmetry preserving numerical schemes for partial differential equations and their numerical tests , 2011, 1110.5921.
[63] D. Duncan,et al. SYMPLECTIC FINITE DIFFERENCE APPROXIMATIONS OF THE NONLINEAR KLEIN–GORDON EQUATION∗ , 1997 .
[64] Mark J. Gotay,et al. A multisymplectic framework for classical field theory and the calculus of variations II: space + time decomposition , 1991 .
[65] Alexei F. Cheviakov,et al. GeM software package for computation of symmetries and conservation laws of differential equations , 2007, Comput. Phys. Commun..
[66] Z. Deng,et al. Multi-symplectic Runge-Kutta methods for Landau-Ginzburg-Higgs equation , 2009 .
[67] B. Lindgren,et al. Evaluation of scaling laws derived from Lie group symmetry methods in zero-pressure-gradient turbulent boundary layers , 2004, Journal of Fluid Mechanics.
[68] R. A. Nicolaides,et al. Covolume Discretization of Differential Forms , 2006 .
[69] G. J. Cooper. Stability of Runge-Kutta Methods for Trajectory Problems , 1987 .
[70] Martin Oberlack. On the decay exponent of isotropic turbulence , 2002 .
[71] C. Isham,et al. Modern Differential Geometry For Physicists , 1989 .
[72] Boying Wu,et al. Spectral variational integrators for semi-discrete Hamiltonian wave equations , 2017, J. Comput. Appl. Math..
[73] R. Ruth. A Can0nical Integrati0n Technique , 1983, IEEE Transactions on Nuclear Science.
[74] M. Oberlack,et al. Analysis and development of subgrid turbulence models preserving the symmetry properties of the Navier–Stokes equations , 2007 .
[75] Pilwon Kim,et al. Invariantization of numerical schemes using moving frames , 2007 .
[76] W. L. Burke. Applied Differential Geometry , 1985 .
[77] Anil N. Hirani,et al. Discrete exterior calculus discretization of incompressible Navier-Stokes equations over surface simplicial meshes , 2015, J. Comput. Phys..
[78] Multisymplectic schemes for the nonlinear Klein-Gordon equation , 2002 .
[79] T. Tarhasaari,et al. Some realizations of a discrete Hodge operator: a reinterpretation of finite element techniques [for EM field analysis] , 1999 .
[80] Jingjing Zhang,et al. Splitting multisymplectic integrators for Maxwell's equations , 2010, J. Comput. Phys..
[81] Eric Sonnendrücker,et al. Spline discrete differential forms. Application to Maxwell' s equations. , 2011 .
[82] Nail H. Ibragimov,et al. Conservation laws for a coupled variable-coefficient modified Korteweg-de Vries system in a two-layer fluid model , 2013, Commun. Nonlinear Sci. Numer. Simul..
[83] D. Dutykh,et al. On the multi-symplectic structure of the Serre–Green–Naghdi equations , 2015, 1511.00612.
[84] Xinyuan Wu,et al. Structure-Preserving Algorithms for Oscillatory Differential Equations , 2013 .
[85] Chun Li,et al. Multi-symplectic Runge-Kutta-Nyström methods for nonlinear Schrödinger equations with variable coefficients , 2007, J. Comput. Phys..
[86] John Carminati,et al. Symbolic Computation and Differential Equations: Lie Symmetries , 2000, J. Symb. Comput..
[87] P. Griffiths,et al. Hyperbolic exterior differential systems and their conservation laws, part I , 1995 .
[88] Aiguo Xiao,et al. Fractional variational integrators for fractional variational problems , 2012 .
[89] Andrew H. Wallace. Algebraic topology: homology and cohomology , 1970 .
[90] A. Baker. Matrix Groups: An Introduction to Lie Group Theory , 2003 .
[91] H. Lewis,et al. A comparison of symplectic and Hamilton's principle algorithms for autonomous and non-autonomous systems of ordinary differential equations , 2001 .
[92] On the geometry of multisymplectic manifolds , 1999 .
[93] Marc I. Gerritsma,et al. A mass, energy, enstrophy and vorticity conserving (MEEVC) mimetic spectral element discretization for the 2D incompressible Navier-Stokes equations , 2016, J. Comput. Phys..
[94] Symplectic approach to the theory of quantized fields. I , 1969 .
[95] Colin J. Cotter,et al. A finite element exterior calculus framework for the rotating shallow-water equations , 2012, J. Comput. Phys..
[96] R. Abraham,et al. Manifolds, tensor analysis, and applications: 2nd edition , 1988 .
[97] Weng Cho Chew,et al. Numerical electromagnetic frequency domain analysis with discrete exterior calculus , 2017, J. Comput. Phys..
[98] M. Spivak. A comprehensive introduction to differential geometry , 1979 .
[99] L. K. Norris,et al. Covariant field theory on frame bundles of fibered manifolds , 2000 .
[100] Mark J. Gotay,et al. A Multisymplectic Framework for Classical Field Theory and the Calculus of Variations: I. Covariant Hamiltonian Formalism , 1991 .
[101] A. Bossavit. On the geometry of electromagnetism. : (2):Geometrical objects , 1998 .
[102] R. Pierrehumbert,et al. Dynamics of a passive tracer in a velocity field of four identical point vortices , 1999, Journal of Fluid Mechanics.
[103] Pavel B. Bochev,et al. Principles of Mimetic Discretizations of Differential Operators , 2006 .
[104] B. Perot. Conservation Properties of Unstructured Staggered Mesh Schemes , 2000 .
[105] A. Awane,et al. k‐symplectic structures , 1992 .
[106] Ying Cao,et al. High-order compact splitting multisymplectic method for the coupled nonlinear Schrödinger equations , 2011, Comput. Math. Appl..
[107] S. Reich. Multi-Symplectic Runge—Kutta Collocation Methods for Hamiltonian Wave Equations , 2000 .
[108] Arjan van der Schaft,et al. Port-Hamiltonian Systems Theory: An Introductory Overview , 2014, Found. Trends Syst. Control..
[109] D. Edelen,et al. Applied exterior calculus , 1985 .
[110] P. J. Kostelec,et al. The use of Hamilton's principle to derive time-advance algorithms for ordinary differential equations , 1996 .
[111] M. Kraus. Variational integrators in plasma physics , 2013, 1307.5665.
[112] S. Lou,et al. Infinitely many nonlocal symmetries and conservation laws for the (1+1)-dimensional Sine-Gordon equation , 2013, 1308.3018.
[113] Alain Bossavit. Computational electromagnetism and geometry : (4):From degrees of freedom to fields , 2000 .
[114] A. Cheviakov. Symbolic Computation of Nonlocal Symmetries and Nonlocal Conservation Laws of Partial Differential Equations Using the GeM Package for Maple , 2014 .
[115] R. Hiptmair. Finite elements in computational electromagnetism , 2002, Acta Numerica.
[116] Marcelo Epstein,et al. The Geometrical Language of Continuum Mechanics , 2010 .
[117] C. Thomas. INTRODUCTION TO SYMPLECTIC TOPOLOGY (Oxford Mathematical Monographs) , 1997 .
[118] Jörg Frauendiener,et al. Discrete differential forms in general relativity , 2006 .
[120] W. Cabot,et al. Group analysis, direct numerical simulation and modelling of a turbulent channel flow with streamwise rotation , 2006, Journal of Fluid Mechanics.
[121] A. Kara,et al. Nonlocal symmetry analysis, explicit solutions and conservation laws for the fourth-order Burgers' equation , 2015 .
[122] Jing-Bo Chen. A multisymplectic pseudospectral method for seismic modeling , 2007, Appl. Math. Comput..
[123] L. Demkowicz,et al. De Rham diagram for hp finite element spaces , 2000 .
[124] Geng,et al. A SIMPLE WAY CONSTRUCTING SYMPLECTICRUNGE-KUTTA METHODS , 2000 .
[125] A. Bossavit. On the geometry of electromagnetism , 1998 .
[126] Enzo Tonti,et al. The Mathematical Structure of Classical and Relativistic Physics: A General Classification Diagram , 2013 .
[127] G. Benettin,et al. On the Hamiltonian interpolation of near-to-the identity symplectic mappings with application to symplectic integration algorithms , 1994 .
[128] R. Abraham,et al. Manifolds, Tensor Analysis, and Applications , 1983 .
[129] Hassan Aref,et al. Point vortex dynamics: A classical mathematics playground , 2007 .
[130] Maria Luz Gandarias,et al. Nonlinear self-adjointness and conservation laws for a generalized Fisher equation , 2013, Commun. Nonlinear Sci. Numer. Simul..
[131] K. Gawȩdzki. On the geometrization of the canonical formalism in the classical field theory , 1972 .
[132] Ke Wu,et al. Discrete total variation calculus and Lee's discrete mechanics , 2006, Appl. Math. Comput..
[133] A. Bossavit. Discretization of Electromagnetic Problems: The “Generalized Finite Differences” Approach , 2005 .
[134] T. Bridges. Multi-symplectic structures and wave propagation , 1997, Mathematical Proceedings of the Cambridge Philosophical Society.
[135] A. Jamiołkowski. Book reviewApplications of Lie groups to differential equations : Peter J. Olver (School of Mathematics, University of Minnesota, Minneapolis, U.S.A): Graduate Texts in Mathematics, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1986, XXVI+497pp. , 1989 .
[136] S. Reich,et al. Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity , 2001 .
[137] M. Salgado,et al. On a kind of Noether symmetries and conservation laws in k-cosymplectic field theory , 2010, 1009.2703.
[138] Jing-Bo Chen. Total Variation in Discrete Multisymplectic Field Theory and Multisymplectic-Energy-Momentum Integrators , 2002 .
[139] A. Aksenov,et al. CRC Handbook of Lie Group Analysis of Differential Equations. Vol. 2. Applications in Engineering and Physical Sciences , 1995 .
[140] Yoshimasa Nakamura,et al. A new discretization of the Kepler motion which conserves the Runge-Lenz vector , 2002 .
[141] C. Mattiussi. An Analysis of Finite Volume, Finite Element, and Finite Difference Methods Using Some Concepts from Algebraic Topology , 1997 .
[142] F. Fedele,et al. Geometric numerical schemes for the KdV equation , 2012, Computational Mathematics and Mathematical Physics.
[143] D. B. Duncan,et al. Sympletic Finite Difference Approximations of the Nonlinear Klein--Gordon Equation , 1997 .
[144] François Gallissot. Les formes extérieures et la mécanique des milieux continus , 1958 .
[145] Vortices and invariant surfaces generated by symmetries for the 3D Navier–Stokes equations , 1999, math-ph/9912008.
[146] Axel Voigt,et al. Discrete Exterior Calculus (DEC) for the Surface Navier-Stokes Equation , 2016, 1611.04392.
[147] Tuomo Rossi,et al. Comparison of discrete exterior calculus and discrete-dipole approximation for electromagnetic scattering , 2014 .
[148] Emmy Noether,et al. Invariant Variation Problems , 2005, physics/0503066.
[149] Alain Bossavit,et al. Computational electromagnetism and geometry : Building a finite-dimensional "Maxwell's house" (1) : Network equations , 1999 .
[151] J. Marsden,et al. Symplectic-energy-momentum preserving variational integrators , 1999 .
[153] Omar Maj,et al. Variational integrators for nonvariational partial differential equations , 2014, 1412.2011.
[154] Jing-Bo Chen. Multisymplectic Geometry, Local Conservation Laws and a Multisymplectic Integrator for the Zakharov–Kuznetsov Equation , 2003 .
[155] Ralf Hiptmair,et al. Discrete Hodge operators , 2001, Numerische Mathematik.
[156] A. Bossavit. Whitney forms: a class of finite elements for three-dimensional computations in electromagnetism , 1988 .
[157] M. J,et al. RUNGE-KUTTA SCHEMES FOR HAMILTONIAN SYSTEMS , 2005 .
[158] Erick Schulz,et al. Convergence of Discrete Exterior Calculus Approximations for Poisson Problems , 2016, Discret. Comput. Geom..
[159] M. Oberlack. A unified approach for symmetries in plane parallel turbulent shear flows , 2001, Journal of Fluid Mechanics.
[160] Robert Kohl,et al. An Introduction To Algebraic Topology , 2016 .
[161] Enzo Tonti,et al. Why starting from differential equations for computational physics? , 2014, J. Comput. Phys..
[162] A. Yusuf,et al. Solitons and Conservation Laws to the Resonance Nonlinear Shrödinger's equation with both Spatio-Temporal and Inter-Modal Dispersions , 2017 .
[163] J. M. Sanz-Serna,et al. Symplectic integrators for Hamiltonian problems: an overview , 1992, Acta Numerica.
[164] Fr'ed'eric H'elein. Multisymplectic formalism and the covariant phase , 2011, 1106.2086.
[165] S. Sternberg,et al. The Hamilton-Cartan formalism in the calculus of variations , 1973 .
[166] Curtis R. Menyuk,et al. Some properties of the discrete Hamiltonian method , 1984 .
[167] Eric Sonnendrücker,et al. Finite Element Hodge for spline discrete differential forms. Application to the Vlasov-Poisson system , 2014 .
[168] Y. Kosmann-Schwarzbach. The Noether Theorems: Invariance and Conservation Laws in the Twentieth Century , 2010 .
[169] Michael Kraus,et al. Variational integrators for reduced magnetohydrodynamics , 2015, J. Comput. Phys..
[170] Jérôme Bonelle,et al. Compatible discrete operator schemes on polyhedral meshes for elliptic and Stokes equations , 2014 .
[171] J. Rotman. An Introduction to Algebraic Topology , 1957 .
[172] E. Hairer,et al. Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .
[173] Peter Monk,et al. Finite Element Methods for Maxwell's Equations , 2003 .
[174] Jerrold E. Marsden,et al. Discrete Lie Advection of Differential Forms , 2009, Found. Comput. Math..
[175] Pierre Sagaut,et al. Comparison of some Lie-symmetry-based integrators , 2011, J. Comput. Phys..
[176] F. Lasagni. Canonical Runge-Kutta methods , 1988 .
[177] F. Hélein. Variational Problems in Differential Geometry: Multisymplectic formalism and the covariant phase space , 2009 .
[178] H. Whitney. Geometric Integration Theory , 1957 .
[179] Nail H. Ibragimov,et al. Conservation laws and non-invariant solutions of anisotropic wave equations with a source , 2018 .
[180] C. Poole,et al. Classical Mechanics, 3rd ed. , 2002 .
[181] Keenan Crane,et al. Digital geometry processing with discrete exterior calculus , 2013, SIGGRAPH '13.
[182] Jonathan Herman. Noether's theorem in multisymplectic geometry , 2017, 1705.05818.
[183] A. Bossavit. On the geometry of electromagnetism : (4): Maxwell's house , 1998 .
[184] Geng Sun,et al. The multi-symplecticity of partitioned Runge-Kutta methods for Hamiltonian PDEs , 2005, Math. Comput..
[185] Konstantin Lipnikov,et al. Mimetic discretization of two-dimensional magnetic diffusion equations , 2013, J. Comput. Phys..
[186] A. Bossavit. A uniform rationale for Whitney forms on various supporting shapes , 2010, Math. Comput. Simul..
[187] A. Hamdouni,et al. Lie-symmetry group and modeling in non-isothermal fluid mechanics , 2012 .
[188] Stephen Lehmann,et al. Cambridge University Press, 1584-1984. M. H. Black , 1986 .
[189] Francesca Rapetti,et al. Whitney Forms of Higher Degree , 2009, SIAM J. Numer. Anal..
[190] A. Yavari. On geometric discretization of elasticity , 2008 .
[191] Ralf Hiptmair,et al. HIGHER ORDER WHITNEY FORMS , 2001 .
[192] Joerg Waldvogel,et al. A new regularization of the planar problem of three bodies , 1972 .
[193] Paul J. Atzberger,et al. Spectral Numerical Exterior Calculus Methods for Differential Equations on Radial Manifolds , 2017, Journal of Scientific Computing.
[194] M. D. Le'on,et al. METHODS OF DIFFERENTIAL GEOMETRY IN CLASSICAL FIELD THEORIES: K-SYMPLECTIC AND K-COSYMPLECTIC APPROACHES , 2014, 1409.5604.
[195] Alain Bossavit,et al. Extrusion, contraction: their discretization via Whitney forms , 2003 .
[196] Ernst Hairer,et al. Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .
[197] Peter J. Olver,et al. Moving frames , 2003, J. Symb. Comput..
[198] Alain Bossavit,et al. Computational electromagnetism and geometry : (5):The "Galerkin hodge" , 2000 .
[199] Sujit Nair. Time adaptive variational integrators: A space–time geodesic approach , 2012 .
[200] Haochen Li,et al. A new multi-symplectic Euler box scheme for the BBM equation , 2013, Math. Comput. Model..
[201] Brian E. Moore,et al. Backward error analysis for multi-symplectic integration methods , 2003, Numerische Mathematik.
[202] D. Arnold,et al. Finite element exterior calculus, homological techniques, and applications , 2006, Acta Numerica.
[203] E. Yaşar,et al. On symmetries, conservation laws and invariant solutions of the foam-drainage equation , 2011 .
[204] M. Tavel. Milestones in mathematical physics Noether's theorem , 1971 .
[205] M. Turner,et al. Asymptotic receptivity analysis and the parabolized stability equation: a combined approach to boundary layer transition , 2006, Journal of Fluid Mechanics.
[206] Jing-Bo Chen,et al. Variational integrators and the finite element method , 2008, Appl. Math. Comput..
[207] James C. Sexton,et al. Geometric discretization scheme applied to the Abelian Chern-Simons theory , 2000, hep-th/0001030.
[208] P. Dedecker. On the generalization of symplectic geometry to multiple integrals in the Calculus of Variations , 1977 .
[209] A. Brizard. An Introduction to Lagrangian Mechanics , 2008 .
[210] Wanqiang Shen,et al. Multi-symplectic variational integrators for the Gross-Pitaevskii equations in BEC , 2016, Appl. Math. Lett..
[211] A. Bossavit. 'Generalized Finite Differences' in Computational Electromagnetics , 2001 .
[212] M. Qin,et al. Symplectic Geometric Algorithms for Hamiltonian Systems , 2010 .
[213] Dusa McDuff,et al. Introduction to Symplectic Topology , 1995 .
[214] P. Channell,et al. Integrators for Lie-Poisson or dynamical systems , 1991 .
[215] M. Crampin,et al. On the multisymplectic formalism for first order field theories , 1991 .
[216] B. Leimkuhler,et al. Simulating Hamiltonian Dynamics , 2005 .
[217] Anil N. Hirani,et al. Delaunay Hodge star , 2012, Comput. Aided Des..
[218] M G Calkin. Lagrangian and Hamiltonian Mechanics , 1996 .
[219] Robert I. McLachlan,et al. On Multisymplecticity of Partitioned Runge-Kutta Methods , 2008, SIAM J. Sci. Comput..
[220] Hans Z. Munthe-Kaas,et al. Topics in structure-preserving discretization* , 2011, Acta Numerica.
[221] Alain Bossavit. Computational electromagnetism and geometry : (3): Convergence , 1999 .
[222] Arzhang Angoshtari,et al. A geometric structure-preserving discretization scheme for incompressible linearized elasticity , 2013 .
[223] C. Scovel,et al. Symplectic integration of Hamiltonian systems , 1990 .
[224] G. Deschamps. Electromagnetics and differential forms , 1981, Proceedings of the IEEE.
[225] Guillermo Miranda,et al. Mimetic Discretization Methods , 2013 .
[226] Jerrold E. Marsden,et al. Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems , 1999 .
[227] Alain Bossavit,et al. Computational electromagnetism and geometry : (2): Network constitutive laws , 1999 .
[228] Christian Günther,et al. The polysymplectic Hamiltonian formalism in field theory and calculus of variations. I: the local case , 1987 .
[229] Erwan Liberge,et al. The Symmetry Group of the Non-Isothermal Navier-Stokes Equations and Turbulence Modelling , 2010, Symmetry.
[230] H. Flanders. Differential Forms with Applications to the Physical Sciences , 1964 .
[231] Anil N. Hirani,et al. Discrete exterior calculus , 2005, math/0508341.
[232] Aziz Hamdouni,et al. A new construction for invariant numerical schemes using moving frames , 2010 .
[233] J. Marsden,et al. Lie-Poisson Hamilton-Jacobi theory and Lie-Poisson integrators , 1988 .
[234] V. A. Dorodnitsyn. Finite Difference Models Entirely Inheriting Continuous Symmetry Of Original Differential Equations , 1994 .
[235] Mathieu Desbrun,et al. The chain collocation method: A spectrally accurate calculus of forms , 2014, J. Comput. Phys..
[236] E. Cartan. La méthode du repère mobile, la théorie des groupes continus et les espaces généralisés , 1935 .
[237] A. Bossavit. Computational Electromagnetism: Variational Formulations, Complementarity, Edge Elements , 1997 .
[238] Jason Frank,et al. Geometric space-time integration of ferromagnetic materials , 2004 .