Additive CHARMM force field for naturally occurring modified ribonucleotides

More than 100 naturally occurring modified nucleotides have been found in RNA molecules, in particular in tRNAs. We have determined molecular mechanics force field parameters compatible with the CHARMM36 all‐atom additive force field for all these modifications using the CHARMM force field parametrization strategy. Emphasis was placed on fine tuning of the partial atomic charges and torsion angle parameters. Quantum mechanics calculations on model compounds provided the initial set of target data, and extensive molecular dynamics simulations of nucleotides and oligonucleotides in aqueous solutions were used for further refinement against experimental data. The presented parameters will allow for computational studies of a wide range of RNAs containing modified nucleotides, including the ribosome and transfer RNAs. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.

[1]  Alexander D. MacKerell,et al.  Robustness in the fitting of molecular mechanics parameters , 2015, J. Comput. Chem..

[2]  L. Nilsson,et al.  Rapid communication capturing the destabilizing effect of dihydrouridine through molecular simulations. , 2014, Biopolymers.

[3]  Richard Lavery,et al.  Significance of Molecular Dynamics Simulations for Life Sciences , 2014 .

[4]  D. Mathews,et al.  Influence of Sequence and Covalent Modifications on Yeast tRNA Dynamics , 2014, Journal of chemical theory and computation.

[5]  Lennart Nilsson,et al.  Conformational Preferences of Modified Uridines: Comparison of AMBER Derived Force Fields , 2014, J. Chem. Inf. Model..

[6]  Mark Helm,et al.  Posttranscriptional RNA Modifications: playing metabolic games in a cell's chemical Legoland. , 2014, Chemistry & biology.

[7]  Benjamin D. Madej,et al.  Lipid14: The Amber Lipid Force Field , 2014, Journal of chemical theory and computation.

[8]  Douglas H. Turner,et al.  The contribution of pseudouridine to stabilities and structure of RNAs , 2013, Nucleic acids research.

[9]  Graham A. Hudson,et al.  Thermodynamic contribution and nearest-neighbor parameters of pseudouridine-adenosine base pairs in oligoribonucleotides , 2013, RNA.

[10]  X. Xuan,et al.  Molecular structure and vibrational spectra of N4-acetylcytosine. , 2013, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[11]  Maria C. Nagan,et al.  Backbone-base interactions critical to quantum stabilization of transfer RNA anticodon structure. , 2013, The journal of physical chemistry. B.

[12]  J. Alfonzo,et al.  Transfer RNA modifications: nature's combinatorial chemistry playground , 2013, Wiley interdisciplinary reviews. RNA.

[13]  Alexander D. MacKerell,et al.  Extension of the CHARMM general force field to sulfonyl‐containing compounds and its utility in biomolecular simulations , 2012, J. Comput. Chem..

[14]  Alexander D. MacKerell,et al.  Automation of the CHARMM General Force Field (CGenFF) I: Bond Perception and Atom Typing , 2012, J. Chem. Inf. Model..

[15]  Alexander D. MacKerell,et al.  Automation of the CHARMM General Force Field (CGenFF) II: Assignment of Bonded Parameters and Partial Atomic Charges , 2012, J. Chem. Inf. Model..

[16]  V. de Crécy-Lagard,et al.  Biosynthesis and function of posttranscriptional modifications of transfer RNAs. , 2012, Annual review of genetics.

[17]  T. Carell,et al.  Structure and function of noncanonical nucleobases. , 2012, Angewandte Chemie.

[18]  Alexander D. MacKerell,et al.  Intrinsic contribution of the 2'-hydroxyl to RNA conformational heterogeneity. , 2012, Journal of the American Chemical Society.

[19]  Alexander D. MacKerell,et al.  Optimization of the CHARMM additive force field for DNA: Improved treatment of the BI/BII conformational equilibrium. , 2012, Journal of chemical theory and computation.

[20]  Lennart Nilsson,et al.  Nucleotide modifications and tRNA anticodon-mRNA codon interactions on the ribosome. , 2011, RNA.

[21]  Alexander D. MacKerell,et al.  Impact of 2′‐hydroxyl sampling on the conformational properties of RNA: Update of the CHARMM all‐atom additive force field for RNA , 2011, J. Comput. Chem..

[22]  V. Ramakrishnan,et al.  How mutations in tRNA distant from the anticodon affect the fidelity of decoding , 2010, Nature Structural &Molecular Biology.

[23]  Jef Rozenski,et al.  The RNA modification database, RNAMDB: 2011 update , 2010, Nucleic Acids Res..

[24]  Alexander D. MacKerell,et al.  Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. , 2010, The journal of physical chemistry. B.

[25]  C. A. Theimer,et al.  Effect of pseudouridylation on the structure and activity of the catalytically essential P6.1 hairpin in human telomerase RNA , 2010, Nucleic acids research.

[26]  Harry A. Stern,et al.  Reparameterization of RNA χ Torsion Parameters for the AMBER Force Field and Comparison to NMR Spectra for Cytidine and Uridine , 2010, Journal of chemical theory and computation.

[27]  Alexander D. MacKerell,et al.  CHARMM general force field: A force field for drug‐like molecules compatible with the CHARMM all‐atom additive biological force fields , 2009, J. Comput. Chem..

[28]  Jianpeng Ma,et al.  CHARMM: The biomolecular simulation program , 2009, J. Comput. Chem..

[29]  Lennart Nilsson,et al.  Efficient table lookup without inverse square roots for calculation of pair wise atomic interactions in classical simulations , 2009, J. Comput. Chem..

[30]  Alexander D. MacKerell,et al.  Additive empirical force field for hexopyranose monosaccharides , 2008, J. Comput. Chem..

[31]  Paul F Agris,et al.  Bringing order to translation: the contributions of transfer RNA anticodon‐domain modifications , 2008, EMBO reports.

[32]  Yu-Cheng Chang,et al.  Synthesis and solution conformation studies of 3-substituted uridine and pseudouridine derivatives. , 2008, Bioorganic & medicinal chemistry.

[33]  Effect of a water molecule on the sugar puckering of uridine, 2'-deoxyuridine, and 2'-O-methyl uridine inserted in duplexes. , 2008, The journal of physical chemistry. A.

[34]  Karl Nicholas Kirschner,et al.  GLYCAM06: A generalizable biomolecular force field. Carbohydrates , 2008, J. Comput. Chem..

[35]  John SantaLucia,et al.  AMBER Force Field Parameters for the Naturally Occurring Modified Nucleosides in RNA. , 2007, Journal of chemical theory and computation.

[36]  J. Šponer,et al.  Refinement of the AMBER Force Field for Nucleic Acids: Improving the Description of α/γ Conformers , 2007 .

[37]  Paul F Agris,et al.  tRNA's wobble decoding of the genome: 40 years of modification. , 2007, Journal of molecular biology.

[38]  V. Hornak,et al.  Comparison of multiple Amber force fields and development of improved protein backbone parameters , 2006, Proteins.

[39]  Maria C. Nagan,et al.  Molecular dynamics simulations of human tRNAUUULys,3: the role of modified bases in mRNA recognition , 2006, Nucleic acids research.

[40]  Mark Helm,et al.  Post-transcriptional nucleotide modification and alternative folding of RNA , 2006, Nucleic acids research.

[41]  C. Chow,et al.  Solution conformations of two naturally occurring RNA nucleosides: 3-methyluridine and 3-methylpseudouridine. , 2005, Bioorganic & medicinal chemistry.

[42]  Nicolas Foloppe,et al.  Toward a full characterization of nucleic acid components in aqueous solution: simulations of nucleosides. , 2005, The journal of physical chemistry. B.

[43]  Chris Oostenbrink,et al.  A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force‐field parameter sets 53A5 and 53A6 , 2004, J. Comput. Chem..

[44]  Alexander D. MacKerell Empirical force fields for biological macromolecules: Overview and issues , 2004, J. Comput. Chem..

[45]  Alexander D. MacKerell,et al.  Extending the treatment of backbone energetics in protein force fields: Limitations of gas‐phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations , 2004, J. Comput. Chem..

[46]  Junmei Wang,et al.  Development and testing of a general amber force field , 2004, J. Comput. Chem..

[47]  P. Agris,et al.  Highly conserved modified nucleosides influence Mg2+-dependent tRNA folding. , 2002, Nucleic acids research.

[48]  N. L. Greenbaum,et al.  Investigation of Overhauser effects between pseudouridine and water protons in RNA helices , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[49]  Alexander D. MacKerell,et al.  Intrinsic conformational energetics associated with the glycosyl torsion in DNA: a quantum mechanical study. , 2002, Biophysical journal.

[50]  Alexander D. MacKerell,et al.  Combined ab initio/empirical approach for optimization of Lennard‐Jones parameters for polar‐neutral compounds , 2002, J. Comput. Chem..

[51]  E. Westhof,et al.  Hydrophobic Groups Stabilize the Hydration Shell of 2'-O-Methylated RNA Duplexes. , 2001, Angewandte Chemie.

[52]  G. Fox,et al.  NMR structure of a ribosomal RNA hairpin containing a conserved CUCAA pentaloop. , 2001, Nucleic acids research.

[53]  R. Micura,et al.  Methylation of the nucleobases in RNA oligonucleotides mediates duplex-hairpin conversion. , 2001, Nucleic acids research.

[54]  Wilfred F. van Gunsteren,et al.  An improved GROMOS96 force field for aliphatic hydrocarbons in the condensed phase , 2001, J. Comput. Chem..

[55]  Vadim V. Demidov,et al.  Nucleic Acids: Structures, Properties and Functions , 2001 .

[56]  Alexander D. MacKerell,et al.  Ab initio conformational analysis of nucleic acid components: Intrinsic energetic contributions to nucleic acid structure and dynamics , 2001, Biopolymers.

[57]  P. Moore,et al.  The crystal structure of yeast phenylalanine tRNA at 1.93 A resolution: a classic structure revisited. , 2000, RNA.

[58]  M. W. Gray,et al.  Pseudouridine in RNA: What, Where, How, and Why , 2000, IUBMB life.

[59]  S. Yokoyama,et al.  Effects of anticodon 2'-O-methylations on tRNA codon recognition in an Escherichia coli cell-free translation. , 2000, RNA.

[60]  D. Crothers,et al.  Nucleic Acids: Structures, Properties, and Functions , 2000 .

[61]  Alexander D. MacKerell,et al.  All‐atom empirical force field for nucleic acids: I. Parameter optimization based on small molecule and condensed phase macromolecular target data , 2000 .

[62]  Alexander D. MacKerell,et al.  Contribution of the Phosphodiester Backbone and Glycosyl Linkage Intrinsic Torsional Energetics to DNA Structure and Dynamics , 1999 .

[63]  P. Agris,et al.  Structural and functional roles of the N1- and N3-protons of psi at tRNA's position 39. , 1999, Nucleic acids research.

[64]  Alexander D. MacKerell,et al.  Intrinsic conformational properties of deoxyribonucleosides: implicated role for cytosine in the equilibrium among the A, B, and Z forms of DNA. , 1999, Biophysical journal.

[65]  A. Warshel,et al.  Thermodynamic Parameters for Stacking and Hydrogen Bonding of Nucleic Acid Bases in Aqueous Solution: Ab Initio/Langevin Dipoles Study , 1999 .

[66]  D. Davis,et al.  Stabilization of the anticodon stem-loop of tRNALys,3 by an A+-C base-pair and by pseudouridine. , 1999, Journal of molecular biology.

[67]  C. Veltri,et al.  An RNA model system for investigation of pseudouridine stabilization of the codon-anticodon interaction in tRNALys, tRNAHis and tRNATyr. , 1998, Journal of biomolecular structure & dynamics.

[68]  Wilfred F. van Gunsteren,et al.  Parametrization of aliphatic CHn united atoms of GROMOS96 force field , 1998, J. Comput. Chem..

[69]  Alexander D. MacKerell,et al.  All-atom empirical potential for molecular modeling and dynamics studies of proteins. , 1998, The journal of physical chemistry. B.

[70]  Alexander D. MacKerell,et al.  Combined ab initio/empirical approach for optimization of Lennard–Jones parameters , 1998 .

[71]  William L. Jorgensen,et al.  OPLS all‐atom force field for carbohydrates , 1997 .

[72]  C. Sich,et al.  Structure of an RNA hairpin loop with a 5'-CGUUUCG-3' loop motif by heteronuclear NMR spectroscopy and distance geometry. , 1997, Biochemistry.

[73]  R. Adamiak,et al.  Solution structure of RNA duplexes containing alternating CG base pairs: NMR study of r(CGCGCG)2 and 2'-O-Me(CGCGCG)2 under low salt conditions. , 1997, Nucleic acids research.

[74]  R. Y. Morita,et al.  Posttranscriptional modification of tRNA in psychrophilic bacteria , 1997, Journal of bacteriology.

[75]  W. L. Jorgensen,et al.  Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids , 1996 .

[76]  Leo Radom,et al.  Harmonic Vibrational Frequencies: An Evaluation of Hartree−Fock, Møller−Plesset, Quadratic Configuration Interaction, Density Functional Theory, and Semiempirical Scale Factors , 1996 .

[77]  J. McCloskey,et al.  Conformational flexibility in RNA: the role of dihydrouridine. , 1996, Nucleic acids research.

[78]  J. Plavec,et al.  How do the energetics of the stereoelectronic gauche and anomeric effects modulate the conformation of nucleos(t)ides? , 1996 .

[79]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules J. Am. Chem. Soc. 1995, 117, 5179−5197 , 1996 .

[80]  Lennart Nilsson,et al.  Stacking Free Energy Profiles for All 16 Natural Ribodinucleoside Monophosphates in Aqueous Solution , 1995 .

[81]  Lennart Nilsson,et al.  Temperature dependence of the stacking propensity of adenylyl-3',5'-adenosine , 1995 .

[82]  D. Davis Stabilization of RNA stacking by pseudouridine. , 1995, Nucleic acids research.

[83]  M. Egli,et al.  Stabilizing effects of the RNA 2'-substituent: crystal structure of an oligodeoxynucleotide duplex containing 2'-O-methylated adenosines. , 1994, Chemistry & biology.

[84]  L. Nilsson,et al.  Stacking-unstacking of the dinucleoside monophosphate guanylyl-3',5'-uridine studied with molecular dynamics. , 1994, Biophysical journal.

[85]  Bernard R. Brooks,et al.  New spherical‐cutoff methods for long‐range forces in macromolecular simulation , 1994, J. Comput. Chem..

[86]  T. Steitz,et al.  Crystal structure of unmodified tRNA(Gln) complexed with glutaminyl-tRNA synthetase and ATP suggests a possible role for pseudo-uridines in stabilization of RNA structure. , 1994, Biochemistry.

[87]  The crystal structure of N 4-methylcytosine-guanosine base-pairs in the synthetic hexanucleotide d ( CGCGm 4 CG ) , 2004 .

[88]  D. Turner,et al.  Structure of (rGGCGAGCC)2 in solution from NMR and restrained molecular dynamics. , 1993, Biochemistry.

[89]  M. Sekine,et al.  Conformational rigidity of specific pyrimidine residues in tRNA arises from posttranscriptional modifications that enhance steric interaction between the base and the 2'-hydroxyl group. , 1992, Biochemistry.

[90]  S. Yokoyama,et al.  Conformational Rigidity of N4-Acetyl-2′-O-methylcytidine Found in tRNA of Extremely Thermophilic Archaebacteria (Archaea) , 1992 .

[91]  Alexander D. MacKerell,et al.  Importance of attractive van der Waals contribution in empirical energy function models for the heat of vaporization of polar liquids , 1991 .

[92]  P. Sigler,et al.  The 3 A crystal structure of yeast initiator tRNA: functional implications in initiator/elongator discrimination. , 1991, The EMBO journal.

[93]  William H. Press,et al.  Numerical recipes , 1990 .

[94]  E. Darżynkiewicz,et al.  Base stacking of simple mRNA cap analogues. Association of 7,9-dimethylguanine, 7-methylguanosine and 7-methylguanosine 5'-monophosphate with indole and purine derivatives in aqueous solution. , 1989, Biophysical chemistry.

[95]  A. Matsuda,et al.  A novel lysine-substituted nucleoside in the first position of the anticodon of minor isoleucine tRNA from Escherichia coli , 1989, The Journal of biological chemistry.

[96]  W. L. Jorgensen,et al.  The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. , 1988, Journal of the American Chemical Society.

[97]  R. Teoule,et al.  NMR and CD studies on an oligonucleotide containing N4-methylcytosine. , 1987, Nucleic acids research.

[98]  P. Agris,et al.  Comparative structural analysis of 1-methyladenosine, 7-methylguanosine, ethenoadenosine and their protonated salts IV: 1H, 13C, and 15N NMR studies at natural isotope abundance. , 1986, Nucleic acids research.

[99]  Y. Yamagata,et al.  A novel guanine-guanine base pairing: crystal structure of a complex between 7-methylguanosine and its iodide. , 1983, Nucleic acids research.

[100]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[101]  J. Reiner,et al.  On the conformation of 5-substituted uridines as studied by proton magnetic resonance. , 1983, Nucleic acids research.

[102]  B. Thole Molecular polarizabilities calculated with a modified dipole interaction , 1981 .

[103]  M. Guéron,et al.  Comparative conformations of uridine and pseudouridine and their derivatives. , 1980, European journal of biochemistry.

[104]  W. Hillen,et al.  INFLUENCE OF SUBSTITUENTS AT THE 5 POSITION ON THE STRUCTURE OF URIDINE , 1980 .

[105]  Peter Pulay,et al.  Systematic AB Initio Gradient Calculation of Molecular Geometries, Force Constants, and Dipole Moment Derivatives , 1979 .

[106]  L. H. Schulman,et al.  The role of the minor base N4-acetylcytidine in the function of the Escherichia coli noninitiator methionine transfer RNA. , 1978, The Journal of biological chemistry.

[107]  S. Ginell,et al.  Conformation of N4-acetylcytidine, a modified nucleoside of tRNA, and stereochemistry of codon-anticodon interaction. , 1978, Biochemical and biophysical research communications.

[108]  R. Sarma,et al.  Nuclear magnetic resonance study of the impact of ribose 2′‐O‐methylation on the aqueous solution conformation of cytidylyl‐(3′ → 5′)‐cytidine , 1977 .

[109]  G. Ciccotti,et al.  Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .

[110]  C. H. Kim,et al.  A relation between inhibition of protein synthesis and conformation of 5'-phosphorylated 7-methylguanosine derivatives. , 1977, Journal of molecular biology.

[111]  D. J. Wood,et al.  Effect of temperature and protonation upon the conformation of 2'-o-methyladenosine. Correlation of conformational parameters in purine nucleosides. , 1977, Biochimica et biophysica acta.

[112]  A. Shatkin Capping of eucaryotic mRNAs , 1976, Cell.

[113]  R. Sarma,et al.  Conformational features of 2′‐O‐methyl‐adenosylyl‐adenosine , 1976 .

[114]  P. V. von Hippel,et al.  Effects of methylation on the stability of nucleic acid conformations: studies at the monomer level. , 1974, Biochemistry.

[115]  A. Drake,et al.  Optical studies of the base-stacking properties of 2'-O-methylated dinucleoside monophosphates. , 1974, Journal of molecular biology.

[116]  M. Sundaralingam,et al.  Conformational analysis of the sugar ring in nucleosides and nucleotides. A new description using the concept of pseudorotation. , 1972, Journal of the American Chemical Society.

[117]  D. Suck,et al.  Molecular and crystal structure of the tRNA minor constituent dihydrouridine , 1972 .

[118]  E. Becker,et al.  Restricted rotation about the exocyclic carbon-nitrogen bond in cytosine derivatives. , 1972, The Journal of physical chemistry.

[119]  M. Sundaralingam,et al.  Stereochemistry of nucleic acids and their constituents. 23. Crystal and molecular structure of dihydrouridine "hemihydrate," a rare nucleoside with a saturated base occurring in the dihydrouridine loop of transfer ribonucleic acids. , 1971, Journal of the American Chemical Society.

[120]  R. Deslauriers,et al.  A proton magnetic resonance study of the molecular conformation of a modified nucleoside from transfer RNA. Dihydrouridine. , 1971, Canadian journal of biochemistry.

[121]  D. Hirsh Tryptophan transfer RNA as the UGA suppressor. , 1971, Journal of molecular biology.