Local Composite Quantile Regression Smoothing for Harris Recurrent Markov Processes.

In this paper, we study the local polynomial composite quantile regression (CQR) smoothing method for the nonlinear and nonparametric models under the Harris recurrent Markov chain framework. The local polynomial CQR regression method is a robust alternative to the widely-used local polynomial method, and has been well studied in stationary time series. In this paper, we relax the stationarity restriction on the model, and allow that the regressors are generated by a general Harris recurrent Markov process which includes both the stationary (positive recurrent) and nonstationary (null recurrent) cases. Under some mild conditions, we establish the asymptotic theory for the proposed local polynomial CQR estimator of the mean regression function, and show that the convergence rate for the estimator in nonstationary case is slower than that in stationary case. Furthermore, a weighted type local polynomial CQR estimator is provided to improve the estimation efficiency, and a data-driven bandwidth selection is introduced to choose the optimal bandwidth involved in the nonparametric estimators. Finally, we give some numerical studies to examine the finite sample performance of the developed methodology and theory.

[1]  Runze Li,et al.  Local composite quantile regression smoothing: an efficient and safe alternative to local polynomial regression , 2010 .

[2]  Hans Arnfinn Karlsen,et al.  Nonparametric estimation in a nonlinear cointegration type model , 2007, 0708.0503.

[3]  Jianqing Fan,et al.  Robust Non-parametric Function Estimation , 1994 .

[4]  C. Granger,et al.  Co-integration and error correction: representation, estimation and testing , 1987 .

[5]  Qi Li,et al.  Functional-coefficient models for nonstationary time series data , 2009 .

[6]  Richard L. Wheeden Measure and integral , 1977 .

[7]  D. Pollard Asymptotics for Least Absolute Deviation Regression Estimators , 1991, Econometric Theory.

[8]  R. Koenker,et al.  Robust Tests for Heteroscedasticity Based on Regression Quantiles , 1982 .

[9]  P. Hall,et al.  Martingale Limit Theory and its Application. , 1984 .

[10]  Jianqing Fan,et al.  Efficient Estimation of Conditional Variance Functions in Stochastic Regression , 1998 .

[11]  D. Tjøstheim,et al.  NULL RECURRENT UNIT ROOT PROCESSES , 2011, Econometric Theory.

[12]  R. Engle,et al.  COINTEGRATION AND ERROR CORRECTION: REPRESENTATION , 1987 .

[13]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[14]  Timo Teräsvirta,et al.  Modelling nonlinear economic time series , 2010 .

[15]  Andrei Mikhailovich Zubkov,et al.  Рецензия на книгу Vaart Aad W. van der, Wellner Jon A., “Weak Convergence and Empirical Processes, with Applications to Statistics”@@@Book review: Vaart Aad W. van der, Wellner Jon A., “Weak Convergence and Empirical Processes, with Applications to Statistics” , 1997 .

[16]  Joon Y. Park,et al.  COINTEGRATING REGRESSIONS WITH TIME VARYING COEFFICIENTS , 1999, Econometric Theory.

[17]  Qiying Wang,et al.  ASYMPTOTIC THEORY FOR LOCAL TIME DENSITY ESTIMATION AND NONPARAMETRIC COINTEGRATING REGRESSION , 2006, Econometric Theory.

[18]  Jianqing Fan,et al.  Data‐Driven Bandwidth Selection in Local Polynomial Fitting: Variable Bandwidth and Spatial Adaptation , 1995 .

[19]  C. Granger Some properties of time series data and their use in econometric model specification , 1981 .

[20]  D. Tjøstheim,et al.  Estimation in Threshold Autoregressive Models with a Stationary and a Unit Root Regime , 2010 .

[21]  Zhengyan Lin,et al.  Local linear M-estimators in null recurrent time series , 2009 .

[22]  Dag Tjøstheim,et al.  Nonparametric estimation in null recurrent time series , 2001 .

[23]  P. Gänssler Weak Convergence and Empirical Processes - A. W. van der Vaart; J. A. Wellner. , 1997 .

[24]  Jiti Gao,et al.  Estimation in semi-parametric regression with non-stationary regressors , 2012, 1205.3324.

[25]  R. Koenker,et al.  Regression Quantiles , 2007 .

[26]  Wolfgang Karl Härdle,et al.  Local polynomial estimators of the volatility function in nonparametric autoregression , 1997 .

[27]  P. Billingsley,et al.  Convergence of Probability Measures , 1970, The Mathematical Gazette.

[28]  E. Nummelin General irreducible Markov chains and non-negative operators: Notes and comments , 1984 .

[29]  D. Tjøstheim,et al.  Nonparametric Regression Estimation for Multivariate Null Recurrent Processes , 2015 .

[30]  D. Ruppert Empirical-Bias Bandwidths for Local Polynomial Nonparametric Regression and Density Estimation , 1997 .

[31]  Jianqing Fan,et al.  Penalized composite quasi‐likelihood for ultrahigh dimensional variable selection , 2009, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[32]  H. Tong,et al.  Cross-validatory bandwidth selections for regression estimation based on dependent data , 1998 .

[33]  D. Tjøstheim,et al.  UNIFORM CONSISTENCY FOR NONPARAMETRIC ESTIMATORS IN NULL RECURRENT TIME SERIES , 2010, Econometric Theory.

[34]  Jianqing Fan,et al.  Local polynomial modelling and its applications , 1994 .

[35]  Qiying Wang,et al.  NONPARAMETRIC COINTEGRATING REGRESSION WITH NNH ERRORS , 2013, Econometric Theory.

[36]  Estimation in Threshold Autoregressive Models with Nonstationarity , 2009 .

[37]  D. Tjøstheim,et al.  Estimation in nonlinear regression with Harris recurrent Markov chains , 2016, 1609.04237.

[38]  Y. Kasahara Limit theorems for Lévy processes and Poisson point processes and their applications to Brownian excursions , 1984 .

[39]  H. Zou,et al.  Composite quantile regression and the oracle Model Selection Theory , 2008, 0806.2905.

[40]  Zhijie Xiao,et al.  Efficient estimation for time-varying coefficient longitudinal models , 2018 .

[41]  Qiying Wang,et al.  Structural Nonparametric Cointegrating Regression , 2008 .

[42]  Keith Knight,et al.  Limiting distributions for $L\sb 1$ regression estimators under general conditions , 1998 .

[43]  Zhijie Xiao,et al.  Quantile cointegrating regression , 2009 .

[44]  Runze Li,et al.  NEW EFFICIENT ESTIMATION AND VARIABLE SELECTION METHODS FOR SEMIPARAMETRIC VARYING-COEFFICIENT PARTIALLY LINEAR MODELS. , 2011, Annals of statistics.

[45]  Gerda Claeskens,et al.  Nonparametric Estimation , 2011, International Encyclopedia of Statistical Science.