Symmetric products and moduli spaces of vector bundles of curves

Let X be a smooth projective curve of genus g ≥ 2 and M be the moduli space of rank 2 stable vector bundles on X whose determinants are isomorphic to a fixed odd degree line bundle L. There has been a lot of works studying the moduli and recently the bounded derived category of coherent sheaves on M draws lots of attentions. It was proved that the derived category of X can be embedded into the derived category of M (cf. [11, 27, 28]). In this paper we prove that the derived category of the second symmetric product of X can be embedded into derived category of M when X is non-hyperelliptic and g ≥ 16.

[1]  Shinnosuke Okawa Semi-orthogonal decomposability of the derived category of a curve , 2011, 1104.4902.

[2]  S. Mukhopadhyay,et al.  Admissible subcategories in derived categories of moduli of vector bundles on curves , 2018, Advances in Mathematics.

[3]  V. Balaji,et al.  On the deformations of certain moduli spaces of vector bundles , 1993 .

[4]  N. Nitsure Cohomology of desingularization of moduli space of vector bundles , 1989 .

[5]  M. Bergh,et al.  Semiorthogonal decompositions of the categories of equivariant coherent sheaves for some reflection groups , 2015, Journal of the European Mathematical Society.

[6]  Cohomology of the moduli space of Hecke cycles , 2004, math/0404351.

[7]  Daniel Huybrechts,et al.  Fourier-Mukai transforms in algebraic geometry , 2006 .

[8]  I. Biswas,et al.  Semi-orthogonal decomposition of symmetric products of curves and canonical system , 2018, 1807.10702.

[9]  Joe Harris,et al.  Moduli of curves , 1998 .

[10]  M. Narasimhan Derived Categories of Moduli Spaces of Vector Bundles on Curves II , 2016 .

[11]  M. Narasimhan Derived categories of moduli spaces of vector bundles on curves , 2017 .

[12]  A. Polishchuk,et al.  Gluing Stability Conditions , 2009, 0902.0323.

[13]  Andreas Krug,et al.  Equivalences of equivariant derived categories , 2014, J. Lond. Math. Soc..

[14]  M. Narasimhan,et al.  Moduli of Vector Bundles on a Compact Riemann Surface , 1969 .

[15]  S. Ramanan The moduli spaces of vector bundles over an algebraic curve , 1973 .

[16]  R. Lazarsfeld Classical setting : line bundles and linear series , 2004 .

[17]  Kyoung-Seog Lee,et al.  Motivic decompositions of moduli spaces of vector bundles on curves , 2020, 2007.06067.

[18]  Kyoung-Seog Lee Remarks on motives of moduli spaces of rank 2 vector bundles on curves , 2018, 1806.11101.

[19]  Joe Harris,et al.  The Geometry Of Schemes , 1992 .

[20]  Desingularizations of the moduli space of rank 2 bundles over a curve , 2004, math/0402447.

[21]  Alexander Kuznetsov,et al.  Derived categories of curves as components of Fano manifolds , 2016, J. Lond. Math. Soc..

[22]  Robin Hartshorne,et al.  Stable reflexive sheaves , 1980 .

[23]  A. Kuznetsov Base change for semiorthogonal decompositions , 2007, Compositio Mathematica.

[24]  W. Nahm,et al.  Semiample and k-ample vector bundles , 2016, Communications in Algebra.

[25]  R. Hartshorne,et al.  ACM bundles on cubic surfaces , 2008, 0801.3600.

[26]  A. Polishchuk,et al.  Semiorthogonal decompositions of equivariant derived categories of invariant divisors , 2017, Mathematical Research Letters.

[27]  J. Drézet,et al.  Groupe de Picard des variétés de modules de fibrés semi-stables sur les courbes algébriques , 1989 .

[28]  M. Narasimhan,et al.  Deformations of the Moduli Space of Vector Bundles Over an Algebraic Curve , 1975 .

[29]  L. V. Keldysh Fourier-Mukai Transforms in Algebraic Geometry , 2006 .