Eigenmodes and eigenfrequencies of vibrating elliptic membranes: a Klein oscillation theorem and numerical calculations

We give a complete proof of the existence of an infinite set of eigenmodes for a vibrating elliptic membrane in one to one correspondence with the well-known eigenmodes for a circular membrane. More exactly, we show that for each pair $(m,n) \in \{0,1,2, \cdots\}^2$ there exists a unique even eigenmode with $m$ ellipses and $n$ hyperbola branches as nodal curves and, similarly, for each $(m,n) \in \{0,1,2, \cdots\}\times \{1,2, \cdots\}$ there exists a unique odd eigenmode with $m$ ellipses and $n$ hyperbola branches as nodal curves. Our result is based on directly using the separation of variables method for the Helmholtz equation in elliptic coordinates and in proving that certain pairs of curves in the plane of parameters $a$ and $q$ cross each other at a single point. As side effects of our proof, a new and precise method for numerically calculating the eigenfrequencies of these modes is presented and also approximate formulae which explain rather well the qualitative asymptotic behavior of the eigenfrequencies for large eccentricities.

[1]  E. Mathieu Mémoire sur le mouvement vibratoire d'une membrane de forme elliptique. , 1868 .

[2]  L. H. Thomas Review: N. W. McLachlan, Theory and application of Mathieu functions , 1948 .

[3]  F. V. Atkinson,et al.  Multiparameter spectral theory , 1968 .

[4]  D. Frenkel,et al.  Algebraic methods to compute Mathieu functions , 2001 .

[5]  A. G. Neves Approximating Solutions of Linear Ordinary Differential Equations with Periodic Coefficients by Exact Picard Iterates , 2006 .

[6]  Joseph B. Keller,et al.  Asymptotic solution of eigenvalue problems , 1960 .

[7]  E. Coddington,et al.  Theory of Ordinary Differential Equations , 1955 .

[8]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[9]  H. Wilson,et al.  Computing elliptic membrane high frequencies by Mathieu and Galerkin methods , 2007 .

[10]  Jianxin Zhou,et al.  Visualization of Special Eigenmode Shapes of a Vibrating Elliptical Membrane , 1994, SIAM Rev..

[11]  N. G. Parke,et al.  Ordinary Differential Equations. , 1958 .

[12]  Fayez A. Alhargan,et al.  A Complete Method for the Computations of Mathieu Characteristic Numbers of Integer Orders , 1996, SIAM Rev..

[13]  B. Sleeman,et al.  Multiparameter spectral theory and separation of variables , 2008 .

[14]  Julio C. Gutiérrez-Vega,et al.  Theory and numerical analysis of the Mathieu functions , 2008 .

[15]  N. Mclachlan Theory and Application of Mathieu Functions , 1965 .

[16]  M. Faierman The completeness and expansion theorems associated with the multi-parameter eigenvalue problem in ordinary differential equations☆ , 1969 .

[17]  Edmund Taylor Whittaker,et al.  A Course of Modern Analysis , 2021 .

[18]  Hans Sagan,et al.  Boundary and Eigenvalue Problems in Mathematical Physics , 1961 .

[19]  W. Magnus,et al.  Hill's equation , 1966 .

[20]  Vincent Heuveline,et al.  On the computation of a very large number of eigenvalues for selfadjoint elliptic operators by means of multigrid methods , 2003 .

[21]  Hans Sagan,et al.  Boundary and Eigenvalue Problems in Mathematical Physics. , 1961 .

[22]  J. W. Brown,et al.  Fourier series and boundary value problems , 1941 .

[23]  D. Owen Handbook of Mathematical Functions with Formulas , 1965 .

[24]  Armando G. M. Neves Symbolic Computation of High-Order Exact Picard Iterates for Systems of Linear Differential Equations with Time-Periodic Coefficients , 2003, International Conference on Computational Science.

[25]  Upper and lower bounds on Mathieu characteristic numbers of integer orders , 2004 .

[26]  Georg J. Still,et al.  Accurate numerical approximations of eigenfrequencies and eigenfunctions of elliptic membranes , 1987 .

[27]  B. A. Troesch,et al.  Eigenfrequencies of an elliptic membrane , 1973 .

[28]  R. Richardson Theorems of oscillation for two linear differential equations of the second order with two parameters , 1912 .

[29]  B. Sleeman Multiparameter spectral theory in Hilbert space , 1978 .