The kinetics and mechanism of combusted Zr–B–Si mixtures and the structural features of ceramics based on zirconium boride and silicide

[1]  E. Levashov,et al.  Phase formation dynamics upon thermal explosion synthesis of magnesium diboride , 2016 .

[2]  E. Levashov,et al.  Production of ultra-high temperature carbide (Ta,Zr)C by self-propagating high-temperature synthesis of mechanically activated mixtures , 2015 .

[3]  M. Zakeri,et al.  Effect of open porosity on flexural strength and hardness of ZrB2-based composites , 2015 .

[4]  E. Levashov,et al.  The features of combustion and structure formation of ceramic materials in the Cr–Al–Si–B system , 2014 .

[5]  E. Levashov,et al.  Synthesis of high-temperature Mo5SiB2-based ceramics in the combustion mode , 2014, Russian Journal of Non-Ferrous Metals.

[6]  J. Pierson,et al.  Hard Cr–Al–Si–B–(N) coatings deposited by reactive and non-reactive magnetron sputtering of CrAlSiB target , 2014 .

[7]  E. Levashov,et al.  Self-propagating high-temperature synthesis of advanced ceramics in the Mo–Si–B system: Kinetics and mechanism of combustion and structure formation , 2014 .

[8]  Hejun Li,et al.  Microstructure and oxidation resistance of Si–Mo–B coating for C/SiC coated carbon/carbon composites , 2013 .

[9]  Xiaohong Shi,et al.  Sealing role of B2O3 in MoSi2–CrSi2–Si/B-modified SiC coating for C/C composites , 2012 .

[10]  R. Sakidja,et al.  Mo–Si–B based coating for oxidation protection of SiC–C composites , 2012 .

[11]  Qiang Liu,et al.  ZrB2-ceramic toughened by refractory metal Nb prepared by hot-pressing , 2010 .

[12]  S. Spigarelli,et al.  Thermal evolution and mechanical properties of hard Ti–Cr–B–N and Ti–Al–Si–B–N coatings , 2008 .

[13]  E. Levashov,et al.  Characteristic properties of combustion and structure formation in the Ti-Ta-C system , 2008 .

[14]  S. Guo,et al.  Pressureless sintering and physical properties of ZrB2-based composites with ZrSi2 additive , 2008 .

[15]  J. Zaykoski,et al.  Properties of Ceramics in the ZrB2/ZrC/SiC System Prepared by Reactive Processing , 2008 .

[16]  R. Orrú,et al.  Combination of SHS and SPS techniques for fabrication of fully dense ZrB2-ZrC-SiC composites , 2008 .

[17]  K. Vanmeensel,et al.  Synthesis and microstructural features of ZrB2–SiC-based composites by reactive spark plasma sintering and reactive hot pressing , 2007 .

[18]  D. Fang,et al.  Processing and Mechanical Properties of Zirconium Diboride‐Based Ceramics Prepared by Spark Plasma Sintering , 2007 .

[19]  E. Opila,et al.  UHTCs: Ultra-High Temperature Ceramic Materials for Extreme Environment Applications , 2007 .

[20]  Guo‐Jun Zhang,et al.  Reactive hot pressing of ZrB2-SiC-ZrC ultra high-temperature ceramics at 1800°C , 2006 .

[21]  D. Sciti,et al.  Properties of a Pressureless‐Sintered ZrB2–MoSi2 Ceramic Composite , 2006 .

[22]  D. Sciti,et al.  Fast Densification of Ultra‐High‐Temperature Ceramics by Spark Plasma Sintering , 2006 .

[23]  F. V. Kiryukhantsev-Korneev,et al.  Hard tribological Ti–B–N, Ti–Cr–B–N, Ti–Si–B–N and Ti–Al–Si–B–N coatings , 2005 .

[24]  A. Bellosi,et al.  Development and characterization of metal-diboride-based composites toughened with ultra-fine SiC particulates , 2005 .

[25]  V. Medri,et al.  Comparison of ZrB2‐ZrC‐SiC Composites Fabricated by Spark Plasma Sintering and Hot‐Pressing , 2005 .

[26]  F. Moztarzadeh,et al.  Oxidation behavior of AlN–Al2O3 composites , 2004 .

[27]  S. Gupta,et al.  Intermetallic compound formation in the Zr–Al–Si ternary system , 2002 .

[28]  Mark M. Opeka,et al.  Mechanical, Thermal, and Oxidation Properties of Refractory Hafnium and zirconium Compounds , 1999 .

[29]  G. Spinolo,et al.  Combustion synthesis of Zr–Si intermetallic compounds , 1999 .

[30]  K. Upadhya,et al.  Materials for ultrahigh temperature structural applications , 1997 .

[31]  H. Pastor Metallic Borides: Preparation of Solid Bodies — Sintering Methods and Properties of Solid Bodies , 1977 .

[32]  D. Kalish,et al.  RESEARCH AND DEVELOPMENT OF REFRACTORY OXIDATION RESISTANT DIBORIDES , 1968 .